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Abstract. We provide two necessary conditions on hash functions for
the Schnorr signature scheme to be secure, assuming compact group rep-
resentations such as those which occur in elliptic curve groups. We also
show, via an argument in the generic group model, that these conditions
are sufficient. Our hash function security requirements are variants of
the standard notions of preimage and second preimage resistance. One
of them is in fact equivalent to the Nostradamus attack by Kelsey and
Kohno (Eurocrypt 2006), and, when considering keyed compression func-
tions, both are closely related to the ePre and eSec notions by Rogaway
and Shrimpton (FSE 2004).

Our results have a number of interesting implications in practice. First,
since security does not rely on the hash function being collision resistant,
Schnorr signatures can still be securely instantiated with SHA-1/SHA-
256, unlike DSA signatures. Second, we conjecture that our properties
require O(2n) work to solve for a hash function with n-bit output, thereby
allowing the use of shorter hashes and saving twenty-five percent in sig-
nature size. And third, our analysis does not reveal any significant dif-
ference in hardness between forging signatures and computing discrete
logarithms, which plays down the importance of the loose reductions in
existing random-oracle proofs, and seems to support the use of “normal-
size” groups.

1 Introduction

The Schnorr signature scheme [Sch90,Sch91] has been particularly influential in
the design of cryptographic protocols. The signature scheme is derived, via the
Fiat–Shamir transform [FS87], from an identification scheme that is a three-
move honest-verifier zero knowledge proof of knowledge of a discrete logarithm.
It is considered highly attractive from an implementor’s perspective because
of its remarkable efficiency when instantiated in elliptic-curve groups. As for
its provable security properties, Pointcheval and Stern [PS00] used the famous
forking lemma to prove the scheme secure under the hardness of computing
discrete logarithms in the random oracle model. This important result guarantees



that, as long as the hash function behaves “ideally”, the only way to break
Schnorr signatures is by solving the discrete logarithm problem.

But what happens if hash functions cease to behave ideally? In particular,
how do the recent collision attacks on practical hash functions like SHA-1 and
MD5 [WY05,WYY05] affect the security of Schnorr signatures? At first sight,
being able to find collisions in the underlying hash function does not seem to lead
to direct attacks on the signature scheme, but perhaps there are less straight-
forward attacks? The best way to answer these questions would be to analyse
the security of the Schnorr signature scheme in the standard, i.e., non-random-
oracle model, as such a proof would surface sufficient real-world properties for
the hash function. Unfortunately, not only do we currently lack a proof in the
standard model, but Paillier and Vergnaud [PV05] even provided evidence that
such a proof is unlikely to ever be found at all.

In this paper, we enhance confidence in the instantiation of Schnorr sig-
natures, or at least its elliptic-curve variant, with hash functions like SHA-1
and MD5 by analysing its security in another popular idealisation, the generic
group model [Sho97]. We present two real-world hash function properties, called
random-prefix preimage (rpp) and random-prefix second-preimage (rpsp) resis-
tance, and we show that they are at the same time necessary conditions in the
standard model and sufficient conditions in the generic group model for the se-
curity of Schnorr signatures. Both properties are strictly weaker than collision
resistance, meaning that they are implied by collision resistance, but they do
not imply it. The rpp property is in fact equivalent to the Nostradamus attack
of Kelsey and Kohno [KK06]. When considering a particular implementation
of the hash function based on keyed compression functions, our properties be-
come equivalent to the ePre and eSec notions in the framework of Rogaway and
Shrimpton [RS04].

What our result means in practice is that, as long as the underlying group
behaves “ideally”, the only way to break Schnorr signatures is by breaking ei-
ther the rpp problem or the rpsp problem associated to the hash function. In
particular, it warrants the secure use of Schnorr when implemented with SHA-
1/SHA-256 or MD5, as long as the rpp and rpsp problems are still believed to
be hard for the respective hash functions.

Apart from instantiation candidates for the hash function, our results have a
number of other important implications for the efficiency and security of Schnorr
signatures. It was already remarked in Schnorr’s original papers [Sch90,Sch91]
that the hash functions could be chosen to have smaller output sizes, result-
ing in shorter signatures, since the schemes’ security did not appear to be re-
lated to finding collisions in the hash function. In fact, a closer look at the
concrete bounds in the random oracle model as obtained through the forking
lemma [PS00,BN06] shows that these proofs already supported shorter hashes
too.

We observe that for a hash function with an output length of n bits, one
expects that both the rpp and rpsp problems require an amount of work of O(2n)
to solve, as opposed to the O(2n/2) work needed to find collisions. This warrants



using 128-bit hashes instead of the 256-bit hashes in use today (for a security
level of 128 bits), and, since Schnorr signatures consist of one group element and
one hash value, this immediately cuts down signature size by twenty-five percent
to 384 bits instead of 512 bits, compared to DSA signatures.

One oddity about our analysis is that the concrete bound in our generic-group
proof is not tight. In principle, this advises against using short hashes, as the loss
in security needs to be compensated for by increasing the security parameter, i.e.,
the hash output length. Interestingly, this situation exactly mirrors the debate
around the group size for Schnorr signatures, where the random-oracle analysis
via the forking lemma yields a notoriously loose security reduction, while our
generic-group analysis does not reflect such a loss. In principle the forking-lemma
loss should be compensated for by inflating the size of a group element, but this
is rarely done in practice. If one continues this reasoning and considers tightness
as a second-order issue, then one can safely use short hash values as well. If
on the other hand one takes tightness seriously, then one should inflate both
the group and the hash output size. A more detailed discussion is provided in
Section 7.

It is worth comparing our results for Schnorr signatures with what is known
for the highly similar and ubiquitous DSA scheme [Nat94]. Unlike the Schnorr
scheme, in DSA finding a collision in the hash function does result, via a known-
message attack, in a break on the signature scheme. DSA therefore cannot profit
from the reduced hash output and signature size that Schnorr enjoys. For DSA
no security proof in the random oracle model is known, but Brown [Bro02,Bro05]
did provide a proof in the generic group model for the elliptic-curve variant EC-
DSA [JMV01]. The proof is quite involved and reduces the security of EC-DSA
to a set of non-standard properties of the hash function and the “conversion
function”. We feel our result for Schnorr is cleaner, and the associated hash
function properties are more natural. Combining our result in the generic group
model with the advantage of additionally having a security proof in the random
oracle model, we feel that Schnorr signatures are to be preferred over EC-DSA.

In [BPVY00] other variants of DSA are presented, of particular interest to
us is what they term Type-II DSA signatures, since in these signatures the
hash function H is applied to both the message and the “commitment” as is
done in Schnorr signatures. However, there are many differences between the
work in [BPVY00] and our work. Firstly [BPVY00] is in the random oracle
model, i.e. they assume that H is a random oracle. Our purpose is to show what
properties are required of H, and so we do not model H as a random oracle.
Secondly, and more importantly, they model what we call the conversion function
as a hash function G and then show various conditions on G for the resulting
signature scheme to be secure. This is important in DSA-like applications where
the function k −→

(
gk (mod p)

)
(mod q) is hard to analyse, but for elliptic

curve based signatures the equivalent function k −→ (x(kP )) (mod q) is much
easier to understand and so modelling G as a hash function does not make
sense. Thirdly, the authors of [BPVY00] mention that one can obtain a saving
of 25 percent in the length of the signature since they use the output of G



as a component of the signature, as opposed to using the output of H as a
component of the signature, as is done in the Schnorr scheme. Hence, our work
can be considered an analogue to the work in [BPVY00] in that we perform an
analysis for the function H as opposed to the function G. Indeed in our analysis
we require very little of the conversion function at all.

As a word of warning about security proofs in the random oracle and generic
group models, we mention that for both idealizations counterexamples have been
found that are secure in the idealized model, but completely insecure for any real-
world instantiation [CGH98,Den02]. These are clearly contrived counterexamples
however, and the fact that no more natural ones have been found until today
has led some researchers to conclude that perhaps they are realistic models after
all [KM07]. Fischlin [Fis00] pointed out that anomalies can arise in the combined
generic group and random oracle model, which was previously used to prove the
security of Schnorr signatures [Sch90,Sch91]. We stress that these anomalies do
not affect our results, as we consider two separate proofs, one in each model,
rather than a single proof in a combined model.

Finally, we hope that our security definitions for hash functions provide fur-
ther motivation for the hash function community to study in more detail new
security notions, including those of [RS04,KK06] and ours.

2 The Generic Group Model

Let G be an abstract group of prime order q, which we shall write additively; one
can think of G as the group of integers modulo q under addition. In particular
we do not make any assumption as to whether discrete logarithms are hard to
compute in G. We let s = dlog2 qe.

In a cryptographic scheme elements of G are encoded by bit strings of length
`. Solving the discrete logarithm problem is essentially equivalent to discovering
the precise encoding used, it is this intuition which sits behind the generic group
model.

We let G be the set of bit strings of length `, and we let τ : G → G be
the “natural representation” of G in G. We shall represent the induced group
operation on the set τ(G) ⊂ G multiplicatively. Thus we will use additive nota-
tion for the representation in which discrete logarithms might be easy (since we
think of this representation as the additive group of integers modulo q) and we
use multiplicative notation for the representation in which we believe discrete
logarithms to be hard.

In a large number of protocols one needs to also map group elements in G to
the smaller set {0, 1}d for d ≤ `, often because ` is too large for practical use, or
for other efficiency reasons. We therefore assume the existence of a “conversion”
function f : G→ {0, 1}d. The conversion function does not necessarily preserve
any properties of the group law in τ(G), nor is it necessarily invertible (see the
examples below). An important quantity in our analysis is the conversion density

δ =
|f(τ(G))|

2d
.



We call the function f “almost-invertible” if there is an efficient randomized

algorithm which given a random bit string R
$← {0, 1}d, with probability δ,

computes a preimage R ∈ τ(G) ⊂ G such that f(R) = R.
The conversion function f plays a crucial role in Brown’s analysis of EC-

DSA [Bro02,Bro05], and its existence explains the distinct difference between the
existence of a proof of security of EC-DSA in the generic group model and the
absence of one for normal DSA. In [Bro02,Bro05] a similar definition of “almost-
invertible” is given for the conversion function f , however Brown’s definition is
stricter than what we will need. Our analysis only requires the relatively weak
definition given above.

In our analysis the existence of the conversion function and an almost-inverse
algorithm will also be crucial, for essentially the same reasons as in Brown’s
analysis. However, since the output of the conversion function is passed to the
hash function in Schnorr signatures one obtains a considerable simplification of
the properties required of the conversion function. Recall in EC-DSA it is the
output of the conversion function which forms a portion of the signature, but
in Schnorr signatures it is the output of the hash function which performs this
task.

Before proceeding we present a number of specific instantiations to illustrate the
above setup.

Finite Field Based Systems:

In this case we let p denote a prime of ` bits in length such that q divides p−1. We
let g ∈ F∗p ⊂ G = {0, 1}` denote a generator of the subgroup 〈g〉 of order q in F∗p.
The function τ is defined as the group homomorphism from G to F∗p ⊂ G defined
by τ(g) = g, where g is the generator of the cyclic group G = (Zq,+) of order
q. Solving discrete logarithms in the group generated by g is then equivalent to
being able to invert τ .

There are two standard choices for the conversion function in finite field based
systems:

1. Either one selects d = ` and sets f to be the identity function. In which case
f is always invertible, and we have

δ ≈ 2s−` .

2. Or one selects d = s and sets f to be the function f(x) = x (mod q),
where one interprets the bit strings as integers. This is the traditional case
for DSA-like systems, as it helps reduce the signature size for DSA. In this
case it is believed that f is hard to invert, and thus our results will not apply.

Elliptic Curve Based Systems:

In this case, assuming we use (as is normally the case) elliptic curves with small
cofactor, we therefore have ` = 2s since points are represented by two elements
in the finite field. The map τ is determined by mapping the generator g of G to



the generator of the elliptic curve. Consequently, solving discrete logarithms in
the subgroup generated by this generator is equivalent to inverting τ .

There are again two standard choices for the conversion function f used in
elliptic curve based systems:

1. Either one selects d = ` and sets f to be the identity function. In which case
f is invertible, and we have

δ ≈ 2s−` = 2−s.

2. Or one selects d = s and sets f to be the function which returns the x
coordinate of a point. In this case we have

δ ≈ 1/2

and there is a randomized algorithm which given an element in D will return
an element in f(G) with probability δ, or will return ⊥, signalling that f
is not invertible on this element of the codomain D. Hence, f is almost-
invertible in this case with probability δ.

The generic group model captures the idea that an adversary that attacks
a primitive based on some group, does so without exploiting the concrete rep-
resentation of the group elements (that is the values in the set G.) In terms
of the setup described above, attacks in the generic group model are captured
by providing the adversary A with indirect access to G. More precisely, once
the adversary is fixed, we select the representation function τ at random from
the set [G ↪→ G] of all possible injective maps from G to G. This ensures that
the adversary has no a priori knowledge of how group elements are represented.
To perform group computations, the adversary is granted access to an oracle
parametrized by τ . The oracle allows us to “indirectly” compute subtractions in
G (that is, divisions in the multiplicative group τ(G) ⊂ G) as follows. On an in-
put of the form (g1, g2) ∈ G×G the oracle returns g1/g2 := τ(τ−1(g1)−τ−1(g2))
if g1, g2 ∈ τ(G). The oracle also returns g = τ(g) on request.

Note that from a division oracle and a generator g one can compute all group
operations as follows:

– The identity can be computed as τ(0) = i = g/g.
– Given an element h, its inverse can then be computed from h−1 = i/h.
– Then given two elements g1 and g2 one can compute their product from

g1 · g2 = g1/g
−1
2 .

Shoup’s result [Sho97] on the lower bound of 2−s/2 for solving discrete loga-
rithms in the generic group model can then be intuitively interpreted as follows.
The adversary against discrete logarithms essentially only obtains information
about τ when it calls the generic group oracle. As this oracle returns random val-
ues, information about the underlying group is only determined when the same
value is returned twice, and the lower bound then follows from the birthday
paradox. In the context of Maurer’s model [MW98] our function τ represents
the handles on the underlying group elements.



3 The Schnorr Signature Scheme

A digital signature scheme is a tuple of algorithms DS = (Kg,Sign,Vfy), where Kg
generates a public key pk and corresponding secret key sk for security parameter
k; Sign(sk ,m) generates a signature σ on message m ∈ {0, 1}∗; and Vfy(pk ,m, σ)
outputs 1 if σ is a valid signature for m under pk and 0 otherwise. Correctness
requires that Vfy(pk ,m,Sign(sk ,m)) = 1.

We recall the standard security notion from [GMR88] of existential unforge-
ability under chosen-message attack (uf-cma). The advantage of an adversary A
in breaking signature scheme DS = (Kg,Sign,Vfy) is given by

Advuf-cma
DS (A) = Pr

[
Vfy(pk ,m, σ) = 1 and

A did not query Sign(sk ,m)

∣∣∣∣ (pk , sk)
$← Kg ;

(m,σ)
$← ASign(sk ,·)(pk)

]
.

We say that DS is (t, qS, ε) secure if no adversary A running in time at most t and
making at most qS queries to its Sign(sk , ·) oracle has advantage greater than ε.
In the random oracle model [BR93], the adversary additionally has access to a
random oracle that it can query up to qH times.

To a generic group G as described in Section 2 and a hash function H :
{0, 1}∗ → {0, 1}n (where we interpret the output as an integer in [0, . . . , 2n−1]),
we associate the Schnorr signature scheme Sch[H] as follows:

Kg:

sk
$← Zq ; pk ← gsk

Return (pk , sk)

Sign(sk ,m):

r
$← Zq ; R← f(gr)

h← H(R||m)
s← r + sk · h (mod q)
Return (s, h)

Vfy(pk ,m, (s, h)):

R← f(gs · pk−h)
If H(R||m) = h
Then return 1
Else return 0.

We do not explicitly show the dependency of Sch[H] on G, as the group will be
clear from the context.

The Schnorr signature scheme was proved secure in the random oracle model
using the forking lemma by Pointcheval and Stern [PS00]. It is hard however
to extract from their proof any guidance on the output length of H, because it
only considers hash functions mapping into Zq. The same is true for the concrete
treatment by Ohta and Okamoto [OO98], and the generalization by Abdalla et
al. [AABN02] hides the output length in the security of an underlying identi-
fication scheme. Using the general forking lemma of Bellare and Neven [BN06]
however, one can obtain the following concrete security bounds for the Schnorr
signature scheme:

Theorem 1. If the discrete logarithm problem in G is (tdlog, εdlog)-hard, then
the Schnorr signature scheme is (tuf-cma, qS, qH, εuf-cma)-secure for

εuf-cma =
√

(qH + qS + 1) · εdlog +
qH + qS + 1

2n
+
qS(qH + qS + 1)

q
(1)

and tuf-cma = tdlog/2 − qStexp + O(qH + qS + 1), where texp is the cost of an
exponentiation in the group G.



This bound clearly indicates that a hash function with n = s/2 output bits
should be sufficient to obtain a security level of s/2 bits, conforming to our
result that H need only be rpp and rpsp-secure, and not collision resistant. (A
term of the form q2H/2

n would have advised for an s-bit hash function.) We do
not claim the above bound as a new result of this paper, but its implication to
the hash output length, and hence signature length, seems to have gone mostly
unnoticed until now.

4 Hash Function Requirements

In this section we define the two properties of the hash function that we show in
this paper to be necessary and sufficient for the security of Schnorr signatures
in the generic group model. The properties are variants of the preimage and
second preimage problems, where a random prefix is imposed by the experiment.
The following definition formally captures the experiments that define these two
security notions.

Definition 1 (Random-prefix (second-)preimage problem). The advan-
tage of an adversary A in solving the random-prefix preimage (rpp) problem,
(respectively the random-prefix second-preimage (rpsp) problem) for prefix in a
domain of bitstrings D and hash function H : {0, 1}∗ → {0, 1}n is given by

Adv
rpp[D]
H (A) = Pr

[
H(R‖m) = h

∣∣ (h,St)
$← A ; R

$← D ; m
$← A(R,St)

]
,

Adv
rpsp[D]
H (A) = Pr

[
H(R‖m) = H(R‖m′)

∣∣∣∣ (m,St)
$← A ; R

$← D

m′
$← A(R,St)

]
,

where the probability is taken over the coins of A and the choice of R. We say that
the random-prefix (second-)preimage problem for H is (t, ε) hard if no adversary
A running in time t has advantage greater than ε in solving it.

Both of the above assumptions are directly implied by the collision resistance
of H, a result which we leave to the reader. The fact that collisions can be found
in time O(2n/2) using a birthday attack does not mandate shorter hashes. For
an ideal hash function and sufficiently large d though, one expects both of the
above problems to take time O(2n) to solve, so that an n-bit output hash should
be sufficient to provide n bits of security. The rpp problem appeared earlier in
work by Kelsey and Kohno [KK06] as the chosen target forced prefix preimage
problem. They present the so-called “herding” attack that essentially solves it in
time O(23n/4), for a diamond structure of width 2n/4, if the hash function follows
the Merkle-Damg̊ard iteration [Mer90,Dam90]. The attack is easily adapted to
break rpsp resistance as well. What this means for practice is that one should
not instantiate the hash function with a Merkle-Damg̊ard iteration of an n-bit
compression function. Instead, one should probably simply truncate the output
of a 2n-bit hash function to n bits. (Such a method would in our situation be
reminiscent of Lucks’ wide-pipe hash [Luc05].) Therefore, using for example the



first 128 bits of the SHA-256 hash should in practice provide a security level of
128 bits.

A connection arises between our new notions and the seven-notion framework
of Rogaway-Shrimpton [RS04] when H is the particular instantiation in the dedi-
cated key setting [BR07], of H(R‖m) = G(R,m) where G : G×{0, 1}∗ → {0, 1}n
and the key R of the hash function G comes from the codomain of f . Namely, it is
easy to see that H is rpp resistant if and only if G is everywhere preimage (ePre)
resistant, and H is rpsp resistant if and only if G is everywhere second-preimage
(eSec) resistant, a notion that is sometimes better known as universal one-way
hashing [NY89] or target-collision resistance [BR97]. Unfortunately, to support
arbitrary-length messages, we would need a Merkle-Damg̊ard like iteration that
preserves ePre and eSec resistance. Such iterations typically require much more
random key material [Mir01] than the 256 bits provided by R, and this key ma-
terial would have to be included in the signatures, as in [HK06], thereby blowing
up the signature size. Alternatively, one could derive the keys from R using a
small-input random oracle as done in [ANPS07].

5 Necessary Security Properties on the Hash Function

We now show that if either of our two assumptions on the hash function does not
hold, then an algorithm can be constructed which breaks the Schnorr signature
scheme. Our proofs only work for values of δ which are not negligible small, and
so our necessary conditions essentially only have an effect in the real world for
specific choices of f . Our necessary conditions however do not require f to be
almost-invertible.

Proposition 1. Let A be an adversary against the rpp[D] problem for the hash
function H, with domain D = f(τ(G)) ⊂ {0, 1}d. Then there exists an adversary
B against the Schnorr signature scheme such that

Advuf-cma
Sch[H] (B) = Adv

rpp[D]
H (A).

Proof. Let A be an adversary against the rpp[D] problem. We construct algo-
rithm B that on input public key pk runs A’s first stage to obtain (h,St), chooses

s
$← Zq, computes R = f(gs · pk−h), and then runs A’s second stage to obtain

m
$← A(R,St). Algorithm B outputs (s, h) as a forgery for message m. If A is

successful then B’s attempted forgery satisfies the verification equation since:

H(R‖m) = h and R = f(gs · pk−h).

The desired result follows.

A similar result holds for the random-prefix second-preimage resistance prop-
erty, except now the algorithm B is no longer a passive adversary against the
signature scheme.



Proposition 2. Let A be an adversary against the rpsp[D] problem for the hash
function H, with domain D = f(τ(G)) ⊂ {0, 1}d. Then there exists an adversary
B against the Schnorr signature scheme such that

Advuf-cma
Sch[H] (B) = δ · Advrpsp[D]

H (A) .

Proof. Let A be an adversary for the rpsp[D] problem. Consider the algorithm B
that on input pk runs A’s first stage to obtain (m,St). Algorithm B then makes
a signature query (s, h) ← Sign(sk ,m). It then computes R = f(gs · pk−h) and

runs A’s second stage to obtain m′
$← A(R,St). Algorithm B outputs (s, h) as

its forgery on message m′. If A is successful then B’s attempted forgery satisfies
the verification equation since:

H(R‖m) = H(R‖m′) and R = f(gs · pk−h).

The desired result follows.

6 Sufficient Security Properties in the Generic Group
Model

We now adapt the security definition for signature schemes to take into account
the generic group model. In the particular case of the Schnorr signature scheme
we define its security via the following game between an adversary A and a
challenger C. In the game, both parties have access to a generic group oracle Gτ
with τ selected at random (as described earlier in the paper). The challenger

generates a signature key sk = x
$← Zq and computes, using its access to the

generic group oracle, the corresponding verification key pk = gx = τ(x ·g) which
it passes as input to A.

Besides queries to the generic group oracle, the adversary A can also request

signatures from C: the adversary sends m to C and obtains (s, h)
$← Sign(sk,m),

computed by C using the generic group oracle.
At some point the adversary outputs a tentative forgery (m∗, (s∗, h∗)). Let

A wins be the event that (s∗, h∗) is a valid signature on m∗, and m∗ had not
been queried prior to the challenger. We define the advantage of A in breaking
the security of signature scheme Sch[H] in the generic group model by:

Advuf-cma
Sch[H] (A) = Pr

A,C,τ
[A wins] ,

where the probability is taken over the coins of A and C, as well as over the choice
of τ . We say that the Schnorr signature scheme is (t, ε) secure (in the generic
group model) if for any adversary that runs in time t we have Advuf-cma

Sch[H] (A) < ε.
Notice that both the challenger and the adversary access the group via the

generic group oracle. In our proofs, the challenger has control over the generic
group oracle (in particular the selection of τ), in much the same way that a
challenger in the random oracle model may have control over the random oracle



(the so-called “programmable random oracle”). The following theorem, which
formalizes our main result, says that the Schnorr signature scheme is secure as
long as the hash function used in its construction satisfies the security notions
that we put forth in this paper.

Theorem 2. Let H : {0, 1}∗ → {0, 1}n ↪→ Zq be some hash function, and let G
be some fixed group modelled as a generic group over the set of bit strings G. Let
f : G → {0, 1}d be an almost-invertible conversion function. If both the rpp[D]
and the rpsp[D] are hard for H, with respect to the domain D = {0, 1}d, then the
Schnorr signature scheme Sch[H] is secure in the generic group model.

Proof. Fix some adversary A against the Schnorr signature scheme, and let qG
and qS be upper bounds on the number of queries that A makes to its generic
group oracle, and to its signing oracle, respectively. Assume that the rpp and
rpsp problems are, respectively, (εrpp, trpp) and (εrpsp, trpsp)-hard over {0, 1}d. We
show that

Advuf-cma
Sch[H] (A) ≤ qG

δ
· εrpp +

qS + 2

δ
· εrpsp +O

(
(qS + qG)2

q

)
(2)

for all adversaries A running in time tA. We will determine the relation between
tA, trpp and trpsp as we progress.

A particularly useful way of describing the execution of some generic group
adversary A against the Schnorr signature scheme is through a list L that records
what the adversary learns during the interaction. Each entry in the list is a
tuple of the form (g, k, l) ∈ G× Zq × Zq which indicates that the adversary had
learned the representation g of the group element (k − x · l) · g. In particular L
contains (gg, 1, 0) and (ggx , 0, q − 1) (the group generator, and the verification
key of the scheme), where gg, ggx ∈ G are randomly chosen, and are deemed to
represent gg = τ(g), ggx = τ(x · g). New tuples are added to the list, following
the queries of the adversary. When A makes a query (g1, g2) to its generic group
oracle L is modified as follows. If there exists tuples (g1, ki, li) and (g2, kj , lj) in
L, but L does not contain a tuple of the form (g, ki − kj , li − lj) then the tuple
(g, ki−kj , li− lj) is added to the list. Here, g is the representation, under specific
map G → G chosen in the generic group oracle, of the group element obtained
from the ((ki − kj)− (li − lj) · x mod q) · g. If either of the tuples (g1, ki, li) or
(g2, kj , lj) does not exist in L then we abort. We remark that it is possible
to make modifications to the model, and to what follows, so that the queries
above can always be answered. However, the changes would only complicate the
discussion while adding no additional insight. For each signature query m that
the adversary makes to its signing oracle, the tuple (gR, s, h) is added to the
list where: gR is the representation of the group element R = r · g (for some
randomly chosen r ∈ Zq), h = H(f(gR)||m), and s = r + x · h mod q.

Conversely (and this is one key technique in our proof, as is in other works
on the generic group model), one can simulate the environment of the adversary
by constructing and maintaining the function τ : G→ G on the fly: each time a
new tuple (·, k, l) needs to be inserted in the list, the adversary selects a random



value g ∈ G and inserts (g, k, l) in L, such that g is distinct from the first
component of all other tuples in L. Provided that during the real execution of
the algorithm no two entries in L correspond to the same group element, that
is, ki − li · x 6= kj − lj · x mod p, the simulation carried out this way is perfect
(otherwise the first component of entries i and j in L should be equal, whereas
in the simulation they are chosen independently at random). We write NoEqual
for the event that during the execution of A no two entries i, j in L satisfy the
property that ki − x · li = kj − x · lj mod p.

We have:

Advuf-cma
Sch[H] (A) = Pr [A wins ∧ NoEqual] + Pr

[
A wins ∧ NoEqual

]
≤ Pr [A wins | NoEqual] + Pr

[
NoEqual

]
We obtain the desired result by the two terms on the right hand side. Via the
union bound we get:

Pr
[
NoEqual

]
≤

∑
i,j≤|L|,i6=j

Pr
x

[ki − x · li = kj − x · lj mod p]

=
∑

i,j≤|L|,i6=j

Pr
x

[
x = (ki − kj)(lj − li)−1 mod p

]
= O(

|L|2

q
)

To upper bound Pr [A wins ∧ NoEqual] we proceed as follows. We assume that
prior to outputting its attempted forgery, the adversary actually verifies its va-
lidity using the verification algorithm of the signature scheme. Our assumption is
without loss of generality. For any adversary A who does not fulfill this property,
one can easily construct an adversary B which does, and which has the same
advantage in breaking the signature scheme. The assumption implies that for
a valid forgery (m∗, (s∗, h∗)) output by A a tuple of the form (g, s∗, h∗) neces-
sarily occurs in L. We distinguish several possible relations between the forgery
(m∗, (s∗, h∗)) output by adversary A and the entries in list L that describes its
execution. For each of the possibilities we describe an event whose probability
we then bound. There are four types of entries in L:

1. The entries triggered by generic group oracle queries.
2. The entries triggered by signature queries.
3. The entry used to initialise the generator (i.e. (gg, 1, 0)).
4. The entry used to initialise the public key (i.e. (ggx , 0, q − 1)).

1. We define MatchGG to be the event that the forgery output by A is valid
and a tuple of the form (gi∗0 , s

∗, h∗) has been added to L following the i∗0
query of A to its generic group oracle.

2. We define MatchSig to be the event that the forgery output by A is valid
and that a tuple of the form (gi∗0 , s

∗, h∗) has been added to L following the
i∗0 signature request of A (on message mi∗0

).



3. Let Matchg be the event that the forgery output by A is successful, and is
of the form (m∗, (1, 0)).

4. Let Matchgx be the event that the forgery output by A is successful, and is
of the form (m∗, (0, q − 1)).

Next we bound the probability of the above events, conditioned on the event
NoEqual, and use the bounds to also bound the advantage of the adversary. More
precisely, we construct adversaries B and C such that:

δ

qG
· Pr [MatchGG | NoEqual] ≤ Adv

rpp[D]
B,G (B) (3)

and

δ

(qS + 2)
· Pr [MatchSig ∨Matchg ∨Matchgx | NoEqual] ≤ AdvrpspH (C). (4)

Bounding the probability of event MatchGG. We construct an adversary B which
runs A as a subroutine and simulates its environment. The adversary is such
that whenever event MatchGG occurs (and B does not abort), then adversary B
wins in the game that defines the rpp game.

Adversary B works as follows. It selects uniformly at random an integer
i0 ∈ {1, 2, . . . , qG} (representing the index of one of the generic group queries

that A makes), then selects x
$← Zq, and initialises the list L with (gg, 1, 0) and

(ggx , 0, q− 1), with gg, ggx selected uniformly at random from G. Then B passes
ggx to A and then answers its queries as follows:

– For each query (g1, g2) (except the i0th query) that A makes to its generic
group oracle, adversary B proceeds as follows: it looks up in the list L two
tuples of the form (g1, k1, l1) and (g2, k2, l2). If such tuples cannot be found,
then B returns ⊥ to A. Otherwise, B computes (k, h) = (k1− k2 mod q, l1−
l2 mod q) and checks if k−x·l = ki−x·li mod q for some tuple (gi, si, hi) ∈ L.
If such a tuple can be found, then B returns gi to A. Else, B selects random

g
$← G, adds the tuple (g, s, h) to L, and returns g to A.

– When A makes its i0’s query to its generic group oracle, (g1, g2), adversary
B searches L for two tuples (g1, k1, l1) and (g2, k2, l2). If these are not found,
the B returns ⊥ to A. Otherwise, B computes (ki0 , li0) = (k1−k2 mod q, l1−
l2 mod q) and sends li0 to its environment (recall that B is against the rpp of
H, and so we are using li0 = l1− l2 mod q as the h required as the challenge
to the simulator in the rpp game). It then receives an element ξi0 selected at
random from {0, 1}d. Adversary B now tries to invert f on the element ξi0
to obtain gi0 ∈ G, which it can do with probability δ. If this does not work
then B aborts, otherwise B adds (g, ki0 , li0) to L, and returns g to A.

– For each query m that A makes to its signing oracle adversary B computes
a signature on the m as follows. First B selects random r ∈ Zq, computes

R = r·g, selects gR
$← G, computes h = H(f(gR)||m), and s = r+x·h mod q.

It then returns (s, h) to A, and adds (gR, s, h) to L.



WhenA outputs its attempted forgery (m∗, (s∗, h∗)), adversary B checks whether
h∗ = ki0 . If this is not the case, then B aborts. Otherwise, B outputs m∗ to its
environment. Notice that if (m∗, (s∗, h∗)) is a valid forgery, then we have that
H(f(gRi0

)||m∗) = ki0 , and therefore B wins in the rpp game.
It is immediate that the simulation that B offers to A is perfect, provided

that event NoEqual occurs.
Then whenever event MatchGG occurs, B guesses successfully i0, and B does

not abort its execution, (which happens with probability δ, the probability that
B can invert f on ξi0), adversary B wins in the game for random-prefix preimage
resistance. That is:

δ

qG
· Pr [MatchGG | NoEqual] ≤ Adv

rpp[D]
H (B) (5)

Furthermore, if A runs in time tA then B runs in time tA + t′, where t′ is the
time spent in maintaining the environment of A.

Bounding the probability of event MatchSig∨Matchg∨Matchgx . We construct an
adversary C which runs A as a subroutine and simulates its environment. The
adversary is such that whenever one of the events MatchSig,Matchg, or Matchgx
occurs in the simulated execution of A, then C wins in the rpsp game.

The precise details of how C works are as follows. Adversary C selects uni-
formly at random

i0
$← {−1, 0, 1, 2, . . . , qS}, g

$← G, and x
$← Zq.

The adversary maintains the list L associated to the execution of adversary A.
The list is initialised as follows:

– If i0 = −1 then C sends 0 to its environment and receives a string ξ selected
uniformly at random from {0, 1}d. It computes g = f−1(ξ) and initialises
the list L with tuples (gg = g, 1, 0), (ggx , 0, q − 1), where ggx is selected at
random from G.

– If i0 = 0 then C sends q − 1 to its environment and receives a string ξ
selected uniformly at random from {0, 1}d. It computes g = f−1(ξ). The
list L is initialised with (gg, 1, 0), (ggx = g, 0, q − 1), where gg is selected at
random from G.

– If i0 ∈ {1, 2, . . . , qS} then L is initialised with (gg, 1, 0) and (ggx , 0, q − 1),
with gg and ggx selected at random from G.

Then C executes A as a subroutine, and answers its queries as follows:

– For each query (g1, g2) to the generic group oracle, C searches L for two
tuples (g1, l1, k1) and (g2, l2, k2). If such pairs are not found, then C returns
⊥ to A. Otherwise, C computes (l, k) = (l1 − l2 mod q, k1 − k2 mod q) and
for each entry (gi, li, ki) in L algorithm C verifies if ki−x · li = k−kl mod q.
If this is the case, then it returns gi to A. Else, it selects a random g ∈ G,
adds (g, k, l) to L and returns g to A.



– For all i 6= i0, when A makes the i’th signing query mi, adversary C responds

as follows. It selects random r
$← Zq, computes R ← r · g, gR

$← G, ξR =
f(gR), h = H(ξR||mi), and s ← r + x · h mod q. Adversary C then adds
(gR, s, h) to L and returns (s, h) to the adversary.

– For the i0’th signing query of A, mi0 (here i0 ∈ {1, 2, . . . , qS}), C outputs
mi0 to its own environment, and receives a random ξ ∈ {0, 1}d (recall that C
is against rpsp). Algorithm C computes g = f−1(ξ), if g = ⊥ then algorithm
C terminates. Then, C selects random a ri0 ∈ Zq, and computes Ri0 = ri0 ·g,
hi0 ← H(ξ||m) and si0 = ri0 + x · h mod q. It adds (g, si0 , hi0) to L, and
returns (s, h) to A.

At some point A outputs its attempted forgery (m∗, (s∗, h∗)). If at this point we
have (s∗, h∗) 6∈ {(1, 0), (0, q−1), (si0 , hi0)} then C aborts its execution. Otherwise,
C outputs m∗.

Analysis of adversary C. It is immediate that the simulation that C offers
to A is perfect, provided that event NoEqual occurs. If event Matchg occurs
(i.e. the forgery output by A is such that (s∗, h∗) = (1, 0)), and i0 = −1 (this
happens with probability 1

qS+2 ), then we have that H(ξ||m∗) = 0, so C wins in

the game against rpsp. Similarly, if Matchgx occurs, and i0 = 0 (this happens
with probability 1

qS+2 ), then H(ξ||m∗) = q − 1, so C wins in the game against

rpsp. Finally, if MatchSig occurs, (i.e. the forgery output by A is such that
(s∗, h∗) = (si∗0 , hi∗0 ) for some i∗0 ∈ {1, 2, . . . , qS} and i0 = i∗0 (this happens with

probability 1
qS+2 ), then H(ξR||m∗) = h∗ = h. Provided that C does not abort its

execution (which happens with probability δ, the probability that C can invert
f on the input it receives from its environment), then C wins in its own game.
Formally, we have that:

δ

qS + 2
· Pr [Matchg ∨Match ∨MatchSig | NoEqual] ≤ Adv

rpsp[D]
H (C) (6)

Furthermore, if A runs in time tA, then C runs in time tA + t′′, where t′′ is the
time taken to maintain the environment of A.

Putting the results together. Since the events Matchg, Matchgx , MatchSig, and
MatchGG form a partition of the event A wins, from Equations (5), and (6) we
have that:

Pr [A wins | NoEqual] = Pr [Matchg ∨Matchgx ∨MatchSig | NoEqual]
+ Pr [MatchGG | NoEqual]

≤ qG
δ
· Advrpp[D]

H (B) +
qS + 2

δ
· Advrpsp[D]

H (C).

and therefore:

Advuf-cma
Sch[H] (A) ≤ qG

δ
· εrpp +

qS + 2

δ
· εrpsp +O

(
(qS + qG)2

q

)
provided that tA + t′ ≤ trpsp, and tA + t′′ ≤ trpp.



7 About the Tightness of the Reduction

We end by discussing the tightness of our security reduction and the implica-
tions to the choice of security parameters. First, we note that the factors 1/δ
in Equation (2) disappear when security is proved under the rpp[D] and rpsp[D]
assumptions for D = f(τ(G)). More importantly however, Equation (2) loses a
factor of qG and qS in the reduction to the rpp and rpsp properties, respectively.
If we assume that an evaluation of H costs one time unit, then εrpp ≤ t/2n and
εrpsp ≤ t/2n are reasonable bounds for hash functions with n output bits. If we
additionally assume that qG ≈ qS ≈ t, then we see that Equation (2) takes the
form

Advuf-cma
Sch[H] (A) ≤ O

(
t2

2n
+
t2

q

)
.

This implies that to obtain b bits of security, one needs to set n = 2b and s =
log2 q = 2b. This is very tight with respect to the size of q, but not with respect
to our desired value of n. The random-oracle analysis via the forking lemma, on
the other hand, comes to the exact opposite conclusion. Taking εdlog ≤ t2/q and
qH ≈ qS ≈ t, Equation (1) yields an inequality of the form

Advuf-cma
Sch[H] (A) ≤ O

(√
t3

q
+

t

2n
+
t2

q

)
,

which advocates using n = b and s = log2 q = 3b. This is tight with respect to
n, but not with respect to q.

So which values to choose? Well, it depends on how much one cares about
tightness. The fact that in the real world Schnorr signatures rarely come in in-
flated group sizes seems to indicate that practitioners see tightness as a second-
order problem. In support of their view, no attacks have been found that match
the poor bounds of the random-oracle proof. Moreover, the hardness gap be-
tween forging signatures and computing discrete logarithms does not arise in
our generic-group analysis, indicating that the loose reduction in the random-
oracle model is just an anomaly of the proof in this setting, rather than an
intrinsic difference in hardness.

The situation for the hash function is the exact mirror image of that for the
group size: it seems hard to come up with an attack that matches the bounds
of the generic-group proof, and the random-oracle proof supports short hashes
without any problem. So if one has been using Schnorr signatures with normal
group sizes, then there is no reason why one shouldn’t use short hash sizes as
well.

A more conservative approach would be to take the loose reductions into
account and stick to the worst-case bounds from both proofs, meaning 3b-bit
groups in combination with 2b-bit hashes. We note though that even in this case
the Schnorr scheme is to be preferred over EC-DSA, as the latter lacks a security
proof in the random-oracle model with respect to a standard assumption. There
is a proof of EC-DSA in the random oracle model with respect to the semi-
logarithm assumption [Bro05][Theorem II.10] however. Whilst in the random



oracle model Schnorr signatures are secure with respect to the discrete logarithm
assumption [PS00].

Another issue with taking short hashes is the vulnerability to so called “du-
plicate signatures” [SPMLS02]. For EC-DSA, duplicate signatures (i.e. one sig-
nature which can sign two messages) can be created by the signer at the point
of creation of his public/private key pair (i.e. the two target messages need to
be known at the key generation stage). When revealing the resulting duplicate
signatures the private key is revealed. A similar result holds for Schnorr signa-
tures.

However, if one uses short hashes in Schnorr signatures then a dishonest
signer can produce duplicate signatures after the key generation stage by creating
O(2n/2) signatures, by essentially finding a collision in the hash function. The
revelation of the two duplicate signatures will not reveal the underlying private
key. Such a result does not contradict the security results above, since the GMR
security definition assumes an attackers against an honest signer, and makes no
statement about security in the presence of dishonest signers.
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