
An extended abstract of this paper appears in Kaoru Kurosawa, editor, Advances in Cryptology –
ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 130–146, Springer-Verlag,
2007 [ANPS07a]. This is the full version.

Seven-Property-Preserving Iterated Hashing: ROX

Elena Andreeva1, Gregory Neven1,2, Bart Preneel1, Thomas Shrimpton3,4

1 SCD-COSIC, Dept. of Electrical Engineering, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

{Elena.Andreeva,Gregory.Neven,Bart.Preneel}@esat.kuleuven.be
2 Département d’Informatique, Ecole Normale Supérieure

45 rue d’Ulm, 75005 Paris, France
3 Dept. of Computer Science, Portland State University

1900 SW 4th Avenue, Portland, OR 97201, USA
teshrim@cs.pdx.edu

4 Faculty of Informatics, University of Lugano

Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

Abstract

Nearly all modern hash functions are constructed by iterating a compression function. At FSE’04,
Rogaway and Shrimpton [RS04] formalized seven security notions for hash functions: collision re-
sistance (Coll) and three variants of second-preimage resistance (Sec, aSec, eSec) and preimage
resistance (Pre, aPre, ePre). The main contribution of this paper is in determining, by proof or
counterexample, which of these seven notions is preserved by each of eleven existing iterations. Our
study points out that none of them preserves more than three notions from [RS04]. In particular,
only a single iteration preserves Pre, and none preserves Sec, aSec, or aPre. The latter two notions
are particularly relevant for practice, because they do not rely on the problematic assumption that
practical compression functions be chosen uniformly from a family. In view of this poor state of
affairs, even the mere existence of seven-property-preserving iterations seems uncertain. As a second
contribution, we propose the new Random-Oracle XOR (ROX) iteration that is the first to provably
preserve all seven notions, but that, quite controversially, uses a random oracle in the iteration. The
compression function itself is not modeled as a random oracle though. Rather, ROX uses an aux-
iliary small-input random oracle (typically 170 bits) that is called only a logarithmic number of times.

Keywords: Cryptographic hash functions, Merkle-Damg̊ard, collision resistance, preimage resis-
tance, second-preimage resistance, provable security.

i

mailto:{Elena.Andreeva,Gregory.Neven,Bart.Preneel} @esat.kuleuven.be
teshrim@cs.pdx.edu
mailto:teshrim@cs.pdx.edu

Contents

1 Introduction 1

2 Security Definitions 4

3 Properties Preserved by Existing Constructions 5
3.1 Chaining Iterations . 5
3.2 Tree Iterations . 9

4 The ROX Construction 10

5 Properties Preserved by the ROX Construction 11

References 14

A Proofs and Counterexamples for Existing Constructions 18
A.1 Proof of Counterexample CE1 . 18
A.2 Proof of Counterexample CE2 . 18
A.3 Proof of Counterexample CE3 . 19
A.4 Proofs for Strengthened Merkle Tree and Counterexample CE4 20
A.5 Proof of Counterexample CE5 . 21

B Proofs of the ROX Construction (Theorem 5.1) 21

ii

1 Introduction

Cryptographic hash functions, publicly computable maps from inputs of arbitrary length to (short) fixed-
length strings, have become a ubiquitous building block in cryptography. Almost all cryptographic hash
functions are iterative: given a compression function F that takes (n + b) bits of input and produces
n bits of output, they process an arbitrary length input by dividing it into b-bit blocks and iterating F
appropriately. The widely used Strengthened Merkle-Damg̊ard (SMD) construction [Mer90a, Dam90]
is known to yield a collision-resistant iterated hash function if the underlying compression function is
collision resistant; in other words, SMD preserves collision resistance of the compression function.

Unfortunately, designing collision resistant compression functions seems hard: witness the recent
collision attacks on several popular hash functions by Wang et al. [WY05, WYY05]. One way out is to
aim for a weaker security notion for the compression function, but not so weak as to make the resulting
hash function useless in practice. A natural question to ask is whether these weaker properties are
also preserved by SMD. For example, does it preserve second-preimage resistance? One hopes so, since
then those applications requiring only second-preimage resistance might remain secure until efficient
second-preimage attacks on the compression function are found. Intuitively, the answer seems to be
positive: after all, SMD preserves collision resistance, and collision resistance can be shown to imply
second-preimage resistance. This intuition is tempting, but wrong. It is true that when using a collision-
resistant compression function, SMD yields a second-preimage resistant hash function (although the
effective security level will be bounded by that of the collision resistance). Butthis says nothing about
what happens if you start with a compression function that is only second-preimage resistant. Lai and
Massey [LM92] claimed that finding second preimages for an iterated hash is equally as hard as finding
second preimages for the compression function, but this was found to be incorrect by Dean [Dea99]
and Kelsey and Schneier [KS05], who show that (for the case of SMD) efficient collision-finding attacks
immediately give rise to second-preimage attacks that beat the anticipated security bound.

Contributions. We took as a starting point a paper by Rogaway and Shrimpton [RS04] that provides
a unifying framework of seven security notions for hash functions and the relations among them. Our
work explores in detail which of the seven properties of [RS04] are preserved by several published hash
constructions. Of the eleven schemes we consider (see Table 1), we found that in fact none preserved all
seven. This raises the question whether it is possible at all to preserve all seven properties. We answer
this question in the affirmative, in the random oracle model [BR93], by presenting a construction
that builds on previous work by Bellare, Rogaway, Shoup and Mironov [BR97, Sho00, Mir01]. Our
construction iterates a real-world compression function but, in the iteration, makes a logarithmic (in
the message length) number of calls to an auxiliary small-input random oracle; we will say more in a
moment to justify this choice. The existence of seven-property-preserving iterations in the standard
model is left as an open problem.

Relevance of the seven properties. Apart from collision-resistance, Rogaway and Shrimpton
consider three variants of second-preimage resistance (Sec) and preimage resistance (Pre). The standard
variants of Sec and Pre are restricted to randomly chosen preimages, and have important applications
like the Cramer-Shoup cryptosystem [CS03] for Sec and Unix-like password storage [LR89, WG00] for
Pre. The stronger everywhere variants (eSec, ePre) consider adversarially chosen preimages. The notion
of ePre is implied by the “strong” hash requirement used in the proof of a signature scheme with partial
message recovery [BJ01]. The notion of eSec is equivalent to the universal one-way hash functions of
Naor and Yung [NY89] and to the target collision resistance of Bellare and Rogaway [BR97]. Bellare
and Rogaway show that eSec is sufficient to extend the message space of signature schemes that are
defined for small messages only.

Following the standard convention established by Damg̊ard [Dam90], and Bellare and Rogaway [BR97],
these notions were formalized for hash function families, indexed by a (publicly known) key K. Current

1

practical hash functions however do not have explicit keys. In fact, it is not even clear what the family
is that they belong to, so it is rather contrived to regard SHA-256 as a randomly drawn member of such
a family. Instead, the always-notions aSec and aPre capture the intuition that a hash function ought
to be (second-)preimage resistant for all members of the family, so that it doesn’t matter which one
is actually used. Alternatively, one could see the aSec and aPre notions as the the natural extensions
to (second-)preimage resistance of Rogaway’s human-ignorance approach to collision-resistant hash-
ing with unkeyed compression functions [Rog06]. (See [ANPS07b] for a subsequent work on property
preservation for iterations of unkeyed compression functions.) In this sense, the aSec and aPre notions
strengthen the standard notions of second-preimage resistance and preimage resistance, respectively, in
the way needed to say that a fixed function such as SHA-256 is Sec and Pre secure. They therefore
inherit the practical applications of Sec and Pre security, and are thus the right notions to consider
when instantiating Cramer-Shoup encryption or Unix-like password storage with a fixed function like
SHA-256. The formal definitions of all seven notions are recalled in Section 2.

Existing constructions. Let us now take a closer look at a number of existing constructions to see
which of the seven notions of [RS04] they preserve. Our findings are summarized in Table 1, which we
see as the main research contribution of our paper. Except for the few entries in the table with question
marks, we come up with either proofs or counterexamples in support of our claims. We found for
example that the ubiquitous SMD construction preserves Coll and ePre security, but surprisingly fails
to preserve any of the other notions. In fact, all of the examined schemes preserve ePre; intuitively, if all
of the range of the (randomly keyed) compression function is hard to invert, then iterating produces a
function whose range is similarly hard to invert. Apart from ePre, most schemes preserve only collision
resistance. These schemes include SMD and the more recent EMD, HAIFA, and Randomized hash.
Of the eleven schemes in the table, none preserves all seven notions. In fact, the best-performing
constructions in terms of property preservation are the XOR Linear hash and Shoup’s hash, which still
preserve only three of the seven notions (Coll, eSec, and ePre). The XOR Tree hash is the only iteration
to preserve Pre, and none of the schemes preserve Sec, aSec or aPre. Remember that the latter two
are particularly relevant for the security of practical hash functions because they do not rely on the
compression functions being chosen at random from a family.

Preserving all properties: the ROX Construction. This rather poor state of affairs may
leave one wondering whether preserving all seven notions is possible at all. We answer this question
in the affirmative, but, quite controversially, were only able to do so in the random oracle model. We
explicitly do not model the compression function itself as a random oracle however. While we view the
main interest of our construction to be a feasibility result for seven-property-preserving hashing, we do
have reasons to believe that our construction makes very “reasonable” use of the random oracle. Allow
us to explain.

Our Random-Oracle-XOR (ROX) construction draws largely on the XOR-linear hash [BR97] and
Shoup’s hash [Sho00]. Both are extensions of the original MD construction that XOR a mask into the
chaining value prior to application of the compression function. Shoup’s construction requires only a
logarithmic number of masks (in the length of the message), which is an improvement over the linear
number required in Bellare and Rogaway’s XOR-linear hash. Moreover, Mironov [Mir01] proves that
Shoup’s mask scheduling is optimal. We, too, require a logarithmic number of masks, and we apply
the masks according to Shoup’s algorithm. Our masks, however, are generated by applying a random
oracle to a sequence of strings (K,m, 〈i〉) that consist of the compression function key K of length k,
the first k bits of the message, and an encoding of a counter i. For a typical security level of k = 80,
this means we only need a random oracle with 170-bit inputs. To hash an ℓ-block message, we query
the random oracle on a number of domain points that is logarithmic in; for example, if |M | = 264 bits
and blocks are 512 bits long, we need at most 56 random oracle calls. We also use a random oracle
to create a padding string; this adds a small, constant number (e.g., two) of calls to a 140-bit random

2

Table 1: Overview of constructions and the properties they preserve. Each row in the table represents
a hash function construction, each column a security notion of [RS04]. The symbol “Y” means that the notion is
provably preserved by the construction; “N” means that it is not preserved, in the sense that we come up with a
counterexample; “?” means that neither proof nor counterexample are known. Underlined entries were known,
all other results are new.

Scheme Coll Sec aSec eSec Pre aPre ePre

Strengthened MD [Mer90b, Dam90] Y N N N N N Y

Linear [BR97] N N N N N N Y

XOR-Linear [BR97] Y N N Y N N Y

Shoup’s [Sho00] Y N N Y N N Y

Prefix-free MD [CDMP05] N N N N N N Y

Randomized [HK06] Y N N N N N Y

HAIFA [BD06] Y N N N N N Y

Enveloped MD [BR06] Y N N N N N Y

Strengthened Merkle Tree [Mer80] Y N N N N N Y

Tree Hash [BR97] N N N N N N Y

XOR Tree [BR97] ? ? N ? Y N Y

ROX Y Y Y Y Y Y Y

oracle.This limited use of the random oracle has the important practical ramification that the function
instantiating it need not be as efficient as the compression function, and can therefore be made with
large security margins. We’ll come back to candidate instantiations in Section 4.

The idea of generating the masks through a random oracle is not new; in fact, it was explicitly
suggested at two separate occasions by Mironov [Mir01, Mir06]. The idea was discarded in [Mir01] for
trivializing the problem, but was revisited in [Mir06] as a viable way to obtain shorter keys for eSec-
secure hashing. Indeed, if one assumes the existence of random oracles with very large domains, then
one can simply use the random oracle to do the hashing. The ROX construction, on the other hand, still
uses a real compression function in the chaining, and uses a small-domain random oracle to preserve
all seven notions of [RS04] using a very short key, including the important aSec and aPre notions.1

Moreover, we do so without changing the syntax of the compression function [BD06] or doubling its
output size [Luc05], both of which can come at a considerable performance penalty.

What about other properties? The seven security notions formalized by [RS04] are certainly
not the only ones that are of interest. Kelsey and Kohno [KK06] suggest chosen-target forced-prefix
security, which can be seen as a special form of multi-collision resistance, as the right goal to stop
Nostradamus attacks. Bellare and Ristenpart [BR06], following previous work by Coron et al. [CDMP05]
and Bellare et al. [BCK96], formalize pseudorandom oracle preservation (PRO-Pr) and pseudorandom
function preservation (PRF-Pr) as goals. Their EMD construction is shown to be PRO-Pr, PRF-
Pr and to preserve collision resistance. More recently, and independently of this work, Bellare and
Ristenpart [BR07] study the Coll, eSec, PRO, PRF, and MAC (unforgeability) preservation of various
iterations, including the SMD, Prefix-free MD, Shoup, and EMD iterations that we study. Their work
does not cover the five other notions of [RS04], while our work does not cover the PRO, PRF, and

1While ROX itself is an explicitly keyed construction, its preservation of aSec/aPre implies that the instantiating
compression function need not be. Indeed, when instantiated with a fixed aSec/aPre-secure compression function like
SHA-256, then the resulting iterated hash is aSec/aPre-secure and therefore also Sec/Pre-secure. ROX thereby provides a
secure way of iterating unkeyed (second-)preimage resistant compression functions.

3

MAC properties. We leave the study of the preservation of these properties by our ROX construction
to future work.

2 Security Definitions

In this section, we explain the security notions for hash functions of [RS04]. Let us begin by establishing
some notation. Let N = {0, 1, . . .} be the set of natural numbers and {0, 1}∗ be the set of all bit strings.
If k ∈ N, then {0, 1}k denotes the set of all k-bit strings and {0, 1}k×∗ denotes the set of all bit strings
of length an integer multiple of k. The empty string is denoted ε. If b is a bit then b denotes its
complement. If x is a string and i ∈ N, then x(i) is the i-th bit of x and xi is the concatenation of i
copies of x. If x, y are strings, then x‖y is the concatenation of x and y. If k, l ∈ N then 〈k〉l is the
encoding of k as an l-bit string. We occasionally write 〈k〉 when the length is clear from the context.

If S is a set, then x
$

← S denotes the uniformly random selection of an element from S. We let y ← A(x)

and y
$

← A(x) be the assignment to y of the output of a deterministic and randomized algorithm A,
respectively, when run on input x.

An adversary is an algorithm, possibly with access to oracles. To avoid trivial lookup attacks, it
will be our convention to include in the time complexity of an adversary A its running time and its code
size (relative to some fixed model of computation).

Security Notions for Keyed Hash Functions. Formally, a hash function family is a function
H : K ×M → Y where the key space K and the target space Y are finite sets of bit strings. The
message space M could be infinitely large; we only assume that there exists at least one λ ∈ N such
that {0, 1}λ ⊆M. We treat (fixed input length) compression functions and (variable input length) hash
functions just the same, the former being simply a special case of the latter.

For an adversary A attacking a hash function H we define the following advantage measures:

AdvColl
H (A) = Pr

[

K
$

← K ; (M,M ′)
$

← A(K) :
M 6= M ′ and

H(K,M) = H(K,M ′)

]

Adv
Sec[λ]
H (A) = Pr

[

K
$

← K ; M
$

← {0, 1}λ

M ′ $

← A(K,M)
:

M 6= M ′ and
H(K,M) = H(K,M ′)

]

AdveSec
H (A) = Pr

[

(M,St)
$

← A ; K
$

← K

M ′ $

← A(K,St)
:

M 6= M ′ and
H(K,M) = H(K,M ′)

]

Adv
aSec[λ]
H (A) = Pr

[

(K,St)
$

← A ; M
$

← {0, 1}λ

M ′ $

← A(M,St)
:

M 6= M ′ and
H(K,M) = H(K,M ′)

]

Adv
Pre[λ]
H (A) = Pr

[

K
$

← K ; M
$

← {0, 1}λ

Y ← H(K,M) ; M ′ $

← A(K,Y)
: H(K,M ′) = Y

]

AdvePre
H (A) = Pr

[

(Y,St)
$

← A ; K
$

← K ; M ′ $

← A(K,St) : H(K,M ′) = Y
]

Adv
aPre[λ]
H (A) = Pr

[

(K,St)
$

← A ; M
$

← {0, 1}λ

Y ← H(K,M) ; M ′ $

← A(Y,St)
: H(K,M ′) = Y

]

These are the seven security notions from Rogaway-Shrimpton [RS04]: the standard three of collision-
resistance (Coll), preimage-resistance (Pre) and second-preimage-resistance (Sec); and the always- and
everywhere- variants of (second)-preimage-resistance (aPre, aSec, ePre and eSec).

4

For atk ∈ {Coll, eSec, ePre}, we define Advatk
H (t) to be the maximum advantage of any adver-

sary with time complexity at most t. We say that the hash function family H is (t, ǫ) atk-secure if
Advatk

H (t) < ǫ. For technical reasons (having to do with uniform sampling of a set) some of our def-
initions are parameterized by λ. For atk ∈ {Sec, aSec,Pre, aPre}, we say that H is (t, ǫ) atk[λ]-secure

if Adv
atk[λ]
H (t) < ǫ, and we say that H is (t, ǫ) atk-secure if Adv

atk[λ]
H (t) < ǫ for all λ ∈ N such that

{0, 1}λ ⊆ M. Note that fixed-length compression functions have M = {0, 1}λ, so that atk[λ]-security
and atk-security are actually equivalent. When giving results in the random oracle model, we also
account for the total number of queries qRO that the adversary makes to its random oracles. In this
case, we will write (t, qRO, ǫ)-secure with the obvious meaning.

Note that the security notions above do not insist that the colliding message M ′ be of length λ. It
is our conscious choice to focus on arbitrary-length security here, meaning that adversaries may find
collisions between messages of varying lengths. In practice, the whole purpose of hash iterations is to
extend the domain of a compression function to arbitrary lengths, so it makes perfect sense to require
that the hash function withstands attacks using messages of different lengths.

3 Properties Preserved by Existing Constructions

In this section we take a closer look at eleven hash iterations that previously appeared in the literature,
and check which of the seven security properties from [RS04] they preserve. The algorithms are described
in Figure 1, the results of our analysis are summarized in Table 1.

As mentioned in the previous section, we focus on arbitrary-length security in this paper. Allowing
for arbitrary-length message attacks invariably seems to require some sort of message padding (un-
strengthened MD does not preserve collision resistance), but care must be taken when deciding on
the padding method: one method does not fit all. This was already observed by Bellare and Rog-
away [BR97], who proposed an alternative form of strengthening where a final block containing the
message length is appended and processed with a different key than the rest of the iteration. This
works fine in theory, but since current compression functions are not keyed, it is not clear how this
construction should be instantiated in practice. In absence of a practical generic solution, we chose to
add standard one-zeroes padding and length strengthening to all chaining iterations that were originally
proposed without strengthening. For tree iterations we use one-zeroes padding for the message input at
the leaves, and at the root make one extra call to the compression function on input the accumulated
hash value concatenated with the message length. (Standard length strengthening at the leaves fails to
preserve even collision resistance here.) These strengthening methods sometimes help but never harm
for property preservation.

3.1 Chaining Iterations

Strengthened Merkle-Damg̊ard. The Strengthened Merkle-Damg̊ard (SMD) construction is known
to preserve collision resistance [Dam90] and to not preserve eSec security [BR97]. In the following two
theorems we prove that it also preserves ePre security, but does not preserve Sec, aSec, Pre, and aPre
security. τF is the time required for an evaluation of F and ℓ = ⌈(λ + 2n)/b⌉ where λ = |M |.

Theorem 3.1 If F is (t′, ǫ′) ePre-secure, then SMDF is (t, ǫ) ePre-secure for ǫ = ǫ′ and t = t′ − ℓ · τF.

Proof: Given an ePre-adversary A against SMDF, consider the following ePre-adversary B against F.
B runs A to obtain the target value Y and outputs the same string Y . When it gets a random key K it
runs A on the same key to obtain a preimage message M ′. Let m′

1‖ . . . ‖m
′
ℓ ← ls-pad(M ′) and let h′

ℓ−1

5

Algorithm SMDF(K, M): Algorithm LH F(K1‖ . . . ‖Kℓ , M):
m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV

For i = 1 . . . ℓ do hi ← F(K, mi‖hi−1) For i = 1, . . . , ℓ do hi ← F(Ki, mi‖hi−1)
Return hℓ Return hℓ

Algorithm XLH F(K‖K1‖ . . . ‖Kℓ , M): Algorithm SH F(K‖K1‖ . . . ‖K⌈log ℓ⌉, M):
m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV

For i = 1, . . . , ℓ do For i = 1, . . . , ℓ do
hi ← F(K, mi‖(hi−1 ⊕Ki−1)) hi ← F(K, mi‖(hi−1 ⊕Kν(i)))

Return hℓ Return hℓ

Algorithm PfMD
F
(K, M): Algorithm EMDF(K, M):

m1‖ . . . ‖mℓ ← pf-pad(M) ; h0 ← IV m1‖ . . . ‖mℓ ← emd-pad(M) ; h0 ← IV1

For i = 1, . . . , ℓ do hi ← F(K, mi‖hi−1) For i = 1 . . . ℓ− 1 do hi ← F(K, mi‖hi−1)
Return hℓ Return hℓ ← F(K, hℓ−1‖mℓ‖IV2)

Algorithm HAIFAF(K, M): Algorithm RH F(K‖R, M):
m1‖ . . . ‖mℓ ← oz-pad(M, i · b) ; h0 ← IV m1‖ . . . ‖mℓ ← sf-pad(M)

ctr ← 0 ; S
$
← {0, 1}s // S is a salt h0 ← F(K, R‖IV)

For i = 1 . . . ℓ− 1 do For i = 1 . . . ℓ do
ctr ← ctr + b ; hi ← F(K, mi‖〈ctr〉l‖S‖hi−1) hi ← F(K, (mi ⊕R)‖hi−1)

hℓ ← F(K, mℓ‖〈|M |〉‖S‖hℓ−1) Return hℓ

Return S, hℓ

Algorithm SMT F(K, M): Algorithm TH F(K1‖ . . . ‖Kd+1 , M):
m1‖ . . . ‖mℓ ← tpad(M) m1‖ . . . ‖mℓ ← tpad(M)
For j = 1, . . . , ad−1 do For j = 1, . . . , ad−1 do
h1,j ← F(K, m(j−1)a+1‖ . . . ‖mja) h1,j ← F(K1, m(j−1)a+1‖ . . . ‖mja)
For i = 2, . . . , d and j = 1, . . . , ad−i do For i = 2, . . . , d and j = 1, . . . , ad−i do
hi,j ← F(K, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja) hi,j ← F(Ki, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)

hd+1,1 ← F(K, hd,1‖〈|M |〉n(a−1)) hd+1,1 ← F(Kd+1, hd,1‖〈|M |〉n(a−1))
Return hd+1,1 Return hd+1,1

Algorithm XTH F(K‖K1‖ . . . ‖Kd+1 , M): Padding algorithms:

m1‖ . . . ‖mℓ ← tpad(M) oz-pad(M, x) = M‖100x−|M|−2

For j = 1, . . . , ad−1 do ls-pad(M) = oz-pad(M, x)‖〈|M |〉b
h1,j ← F(K, (m(j−1)a+1‖ . . . ‖mja)⊕K1) where x = ⌈(|M |+ 2)/b⌉ · b

For i = 2, . . . , d and j = 1, . . . , ad−i do emd-pad(M) = oz-pad(M, x)‖〈|M |〉64
hi,j ← F(K, (hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki) where x = ⌈(|M |+ 66)/b⌉ · b− 64

hd+1,1 ← F(K, (hd,1‖〈|M |〉n(a−1))⊕Kd+1) tpad(M) = oz-pad(M, x)

Return hd+1,1 where x = a⌈loga |M|⌉ · n

Figure 1: Some existing iterative hash constructions. Chaining iterations SMD, LH , XLH , SH ,
PfMD, RH , and EMD use a compression function F : {0, 1}k×{0, 1}b+n → {0, 1}n; HAIFA uses a compression

function F : {0, 1}k × {0, 1}b+l+s+n → {0, 1}n. Tree iterations SMT , TH , and XTH use a compression function
F : {0, 1}k×{0, 1}an→ {0, 1}n. Strings IV , IV 1, IV 2 ∈ {0, 1}n are fixed initialization vectors. Padding algorithms
are given on the bottom right; pf-pad(M) and sf-pad(M) are any prefix-free padding and suffix-free padding
algorithms, respectively. The function ν(i) is the largest integer j such that 2j |i.

be the one-but-last chaining value computed in an execution of SMDF(K,M ′). Algorithm B outputs
m′

ℓ‖h
′
ℓ−1 as its own preimage.

While at first sight the above proof may seem to go through for Pre and aPre security as well, this
is not the case. The target point Y in a Pre attack on F is distributed as F(K,m‖h) for a random

m‖h
$

← {0, 1}b+n. But the target point for the iterated structure SMDF is generated as SMDF(K,M)

for a random M
$

← {0, 1}λ. These two distributions can actually be very different, as is illustrated by
the following counterexample.

6

Theorem 3.2 For atk ∈ {Sec, aSec,Pre, aPre}, if there exists a (t, ǫ) atk-secure compression function
G : K × {0, 1}b+n → {0, 1}n−1, then there exists a (t, ǫ − 1/2n) atk-secure compression function CE1 :
K × {0, 1}b+n → {0, 1}n and an adversary A running in one time step with atk[λ]-advantage one in
breaking SMDCE1

.

Proof: For any compression function G, consider CE1 given by

CE1(K,m‖h) = IV if h = IV

= G(K,m‖h) ‖ IV
(n)

otherwise .

If G is (t, ǫ) atk secure, then CE1 is (t, ǫ − 1/2n) atk secure; we refer to Appendix A.1 for the proof.
From the construction of CE1, it is clear that SMDCE1

(K,M) = IV for all M ∈ {0, 1}∗. Hence, the
adversary can output any message M ′ as its (second) preimage.

Linear hash. The Linear Hash (LH) [BR97] uses ℓ different keys for ℓ-block messages, because it
calls the compression function on a different key at every iteration. The Linear Hash is known to
preserve eSec-security for same-length messages, but Bellare and Rogaway claim [BR97] that length-
strengthening does not suffice to preserve eSec for different-length messages. The following theorem
confirms their claim, and also shows that LH does not preserve Coll. The counterexample CE1 of
Theorem 3.2 can be used to disprove the preservation of Sec, aSec, Pre and aPre-security. A proof
similar to that of Theorem 3.1 can be used to show that LH does preserve ePre-security.

Theorem 3.3 For any atk ∈ {Coll, eSec}, if there exists a (t, ǫ) atk-secure compression function G :
{0, 1}k×{0, 1}b+n → {0, 1}n−2, then there exists a (t, ǫ) atk-secure compression function CE2 : {0, 1}k×
{0, 1}b+n → {0, 1}n and an adversary A running in one step time with atk-advantage 1/4 in breaking
LH CE2

.

Proof: For any compression function G, consider CE2 given by

CE2(K,m‖h) = IV if m‖h = 010b−2‖IV

= 0n−1 ‖ IV
(n)

if (K(1) = 0 and m‖h = 〈1〉b‖IV)

or (K(1) = 1 and m‖h = 〈b + 1〉b‖IV)

= G(K,m‖h) ‖ 1 ‖ IV
(n)

otherwise ,

In Appendix A.2 we prove that if G is (t, ǫ) atk-secure for atk ∈ {Coll, eSec}, then CE2 is (t, ǫ) atk-
secure. When iterating CE2 through LH CE2

with independent keys K1‖K2‖K3, one can easily see that

if K
(1)
2 = 0 and K

(1)
3 = 1, then messsages M = 0 and M ′ = 010b−1 both hash to 0n−1‖IV

(n)
. Since in

the Coll and eSec games this case happens with probability 1/4, we have attacks satisfying the claim
in the theorem.

XOR-Linear Hash. The XOR-Linear Hash (XLH) [BR97] uses keys that consist of a compression
function key K and ℓ masking keys K1, . . . ,Kℓ ∈ {0, 1}

n. It is known to preserve eSec security [BR97].
It can also be seen to preserve Coll and ePre by similar arguments as used for SMD and LH . Coun-
terexample CE1 can be used to show that aSec and aPre are not preserved: the adversary gets to choose
the key in these notions, so it can choose K1 = . . . = Kℓ = 0n so that XLH boils down to SMD. In the
following we show that the XLH construction does not preserve Sec or Pre security either.

Theorem 3.4 For any atk ∈ {Sec,Pre}, if there exists a (t, ǫ) atk-secure compression function G :
K × {0, 1}b+n → {0, 1}n−1, then there exists a (t, ǫ + 1/2b) atk-secure compression function CE3 :
K × {0, 1}b+n → {0, 1}n and an adversary A running in one step time with atk[λ]-advantage one in
breaking XLH CE3

.

7

Proof: For any λ ≤ 2b and compression function G, consider CE3 given by

CE3(K,m‖h) = 0n if m = 〈λ〉b
= G(K,m‖h)‖1 otherwise .

In Appendix A.3 we prove that if G is (t, ǫ) Sec or Pre-secure, then CE3 is (t, ǫ + 1/2b) Sec or Pre-
secure. It is easy to see that, when iterated through XLH CE3

, the hash of any λ-bit message is 0n.
A Pre[λ] adversary can therefore simply output any M ′ ∈ {0, 1}λ, a Sec[λ] adversary can output any
M ′ 6= M ∈ {0, 1}λ.

Shoup’s Hash. The iteration due to Shoup (SH) [Sho00] is similar to the XOR-Linear hash but uses
a different key scheduling that reduces the key length to logarithmic in the message length, rather than
linear. Shoup’s hash is known to preserve eSec-security [Sho00], and it can be shown to preserve Coll
and ePre-security as well. The proofs are very similar to the case of SMD, and hence omitted. Coun-
terexample CE1 disproves preservation of aSec and aPre-security, and counterexample CE3 disproves
preservation of Sec and Pre.

Prefix-free Merkle-Damg̊ard. It was shown in [BR06] that the prefix-free Merkle-Damg̊ard con-
struction (PfMD) [CDMP05] does not preserve Coll security. The counterexample of [BR97] can also
be used to show that it does not preserve eSec, and counterexample CE1 can be used to disprove the
preservation of Sec, aSec, Pre and aPre. Finally, using a proof similar to that for SMD, one can show
that ePre-security is preserved.

Another variant of PfMD by [CDMP05] prepends the message length encoding to the message in
advance. The security results of this scheme easily follow from the ones for the SMD construction.

Randomized hash. The Randomized Hash (RH) [HK06] XORs each message block with a random
value R ∈ {0, 1}b. The construction was originally proved to be eSec secure by making stronger as-
sumptions on the underlying compression function. Its pure security preservation characteristics (i.e.,
assuming only the eSec security of the compression function) were never studied. In our security analysis
of RH treating the value R as either randomness per message or fixed long term key yields identical
results with respect to seven property preservation.

By arguments similar to the case of SMD, one can show that RH preserves Coll and ePre security,
but none of the other notions are preserved. Counterexample CE1 can be used to contradict preservation
of Sec, aSec, Pre, and ePre, and the counterexample of [BR97] can be used to contradict preservation
of eSec.

HAIFA. While the newly proposed HAsh Iterative FrAmework (HAIFA) [BD06] does preclude a num-
ber of specific attacks [Dea99, KS05, KK06] to which SMD admits, they perform exactly the same in
terms of preservation of our security notions. Similar proofs as for SMD can be used to show that
HAIFA preserves Coll and ePre-security, counterexample CE1 can be used to contradict the preserva-
tion of Sec, aSec, Pre, and aPre, and the counterexample of [BR97] applies to contradict preservation
of eSec.

Enveloped Merkle-Damg̊ard. The enveloped Merkle-Damg̊ard (EMD) construction [BR06] is
known to preserve Coll, pseudorandom-oracle, and pseudo-random function behavior. For the seven
security notions that we consider, however, it does not perform better than SMD. Counterexample
CE1 of Theorem 3.2 can be used (setting IV = IV 2) to show that neither of Sec, aSec, Pre, or aPre
are preserved. An adaptation of the counterexample of [BR97] shows that eSec is not preserved either.
Preservation of ePre on the other hand can be proved in a similar way as done in Theorem 3.1.

8

3.2 Tree Iterations

Strengthened Merkle Tree. We consider here the strengthened Merkle tree [Mer80], the Tree
Hash [BR97], and the XOR Tree Hash [BR97]. For conciseness we do not cover other tree iterations
that have appeared in the literature (e.g. [LCL+03, Sar05]). The Merkle tree [Mer80] in its most basic
form (i.e., without length strengthening) suffers from a similar anomaly as basic Merkle-Damg̊ard in
that it does not preserve Coll for arbitrary-length messages. We therefore consider the strengthened
variant SMT here, depicted in Figure 1. We believe SMT is commonly known to preserve Coll, but
we reprove this in Appendix A.4 for completeness. The notion of ePre is easily seen to be preserved
as well. It can be seen not to preserve eSec by a counterexample similar to that of [BR97] given in
Appendix A.4. SMT also fails to preserve Sec, aSec, Pre, and aPre however, as shown in the following
theorem.

Theorem 3.5 For any atk ∈ {Sec, aSec,Pre, aPre}, if there exists a (t′, ǫ′) atk-secure compression
function G : K × {0, 1}an → {0, 1}n−2, then there exists a (t, ǫ) atk-secure compression function CE4 :
K × {0, 1}an → {0, 1}n for ǫ = ǫ′ + 1/2n−1, t = t′, and an adversary A running in one step time with
atk[λ] advantage 1 in breaking SMT CE4

.

Proof: For any compression function G, consider CE4 given by

CE4(K,m1‖ . . . ‖ma) = 0n if ma = 0n

= 1n if ma−1 = 0n and ma 6= 0n

= G(K,m1‖ . . . ‖ma) ‖ 10 otherwise .

We prove in Appendix A.4 that the bounds mentioned above hold for the atk security of CE4. It is
easy to see that, due to the one-zeroes padding to ad bits, any message of length ad−1− 1 ≤ λ ≤ ad − 1
hashes to 1n, leading to trivial constant-time attacks for any such length λ.

Tree Hash. The unstrengthened Tree Hash (TH) was proposed in [BR97] for same-length messages;
we consider the strengthened variant here. It is a variant of SMT where at each level i of the tree the
compression functions use an independent key Ki. It can be seen to preserve ePre for the same reasons
as the SMT construction. Our counterexample CE4 can be used to exhibit the non-preservation of Sec,
aSec, Pre and aPre security. The case of Coll and eSec are a bit more subtle, but the counterexample
below shows that TH does not preserve these either.

Theorem 3.6 For any atk ∈ {Coll, eSec}, if there exists a (t′, ǫ′) atk-secure compression function
G : {0, 1}k × {0, 1}an → {0, 1}n−1, then there exists a (t, ǫ) atk-secure compression function CE5 :
{0, 1}k ×{0, 1}an → {0, 1}n for ǫ = ǫ′, t = t′, such that there exists an eSec-adversary breaking the eSec
security of TH CE5

in constant time with advantage 1/4.

Proof: For any compression function G, consider CE5 given by

CE5(K,M) = 10n−1 if M = (10n−1)a

= 1n if
(

K(1) = 0 and M = (10n−1)a−1‖〈(a− 1)n〉n
)

or
(

K(1) = 1 and M = (10n−1)a−1‖〈(a2 − 1)n〉n
)

= 0 ‖ G(K,M) otherwise .

(1)

We prove in Appendix A.5 that CE5 is (t, ǫ) atk-secure whenever G is (t, ǫ) atk-secure, for atk ∈
{Coll, eSec}.

Note that tpad
(

M = (10n−1)a−1
)

= (10n−1)a and tpad
(

M ′ = (10n−1)a
2−1

)

= (10n−1)a
2

, where tpad is

the tree padding algorithm of Figure 1. If TH CE5
is instantiated with keys K1‖K2‖K3 such that K

(1)
2 = 0

9

and K
(1)
3 = 1, then one can verify that TH CE5

(K1‖K2‖K3,M
′) = TH CE5

(K1‖K2‖K3,M) = 1n. Hence,
the adversary that outputs M and M ′ as colliding message pair has advantage 1/4 in winning the Coll
and eSec games.

XOR Tree. The unstrengthened XOR Tree (XTH) was proposed in [BR97] for fixed-length messages;
we consider the strengthened variant here. It is again a variant of the Merkle tree, where the inputs to
the compression functions on level i are XORed with a key Ki ∈ {0, 1}

an. As for all other iterations, it
is straightforward to see that XTH preserves ePre; we omit the proof. Quite remarkably, the masking of
the entire input to the compression function makes it the only iteration in the literature that preserves
Pre, while at the same time it seems to stand in the way of even proving preservation of Coll. It does
not preserve aSec or aPre because the adversary can choose Ki = 0an and apply counterexample CE4.
We were unable to come up with either proof or counterexample for Coll, Sec, and eSec, leaving these
as an open question. We prove the preservation of Pre below.

Theorem 3.7 If F is (t′, ǫ′) Pre-secure, then XTH F is (t, ǫ) Pre[λ]-secure for all λ ∈ N, ǫ = ǫ′ and
t = t′.

Proof: The proof is quite straightforward. The crux actually lies in the fact that, due to the random
choice of Kd+1 that is XORed with the entire input to the compression function, the image of a random
message M ∈ {0, 1}λ through XTH F follows the same distribution as the image of a random message
M ∈ {0, 1}an through F.

Given a Pre[λ]-adversary A against XTH F, consider the following Pre-adversary B against F. When B

is given a random key K and target point Y , it chooses K1, . . . ,Kd+1
$

← {0, 1}an and runs A on input
K‖K1‖ . . . ‖Kd+1, Y . When A returns a preimage M , B computes hd,1 as defined in the description of
XTH F in Figure 1, and returns

(

hd,1‖〈|M |〉n(a−1)

)

⊕Kd+1 as its own preimage.

4 The ROX Construction

We are now ready to present in detail our Random-Oracle-XOR (ROX) construction. Let F : {0, 1}k ×
{0, 1}b+n → {0, 1}n be a fixed-length compression function. Let 2l be the maximum message length
in bits; typically one would use k = 80 and l = 64. The construction uses two random oracles RO1 :
{0, 1}k × {0, 1}k × {0, 1}⌈log l⌉ → {0, 1}n and RO2 : {0, 1}k × {0, 1}l × {0, 1}⌈log b⌉ → {0, 1}2n. These
random oracles can be built from a single one by adding an extra bit to the input that distinguishes
calls to RO1 and RO2. Our construction can be thought of as a variant of Shoup’s hash, but with the
masks being generated by RO1 and the padding being generated by RO2. More precisely, on input a
message M , our padding function rox-pad outputs a sequence of b-bit message blocks

m1‖ . . . ‖mℓ = M ‖ RO2(m, 〈λ〉, 〈1〉) ‖ RO2(m, 〈λ〉, 〈2〉) ‖ . . . ,

where m are the first k bits of M and λ = |M |. The padding adds a number of bits generated by
RO2 such that the final block mℓ contains at least 2n bits generated by RO2, possibly resulting in an
extra block consisting solely of padding. It is worth noting though that we do not have a separate
length strengthening block. We assume that λ ≥ k because aPre security, and therefore seven-property-
preservation as a whole, do not make sense for short messages. Indeed, the adversary can always
exhaustively try the entire message space. To hash shorter messages, one should add a random salt to
the message.

Let ν(i) be the largest integer j such that 2j divides i, let IV ∈ {0, 1}n be an initialization vector,
and let m be the first k bits of the message M . Our construction is described in pseudocode below; a
graphical representation is given in Figure 2.

10

Algorithm ROX RO1,RO2

F (K, M):

m1‖ . . . ‖mℓ ← rox-padRO2(M) ; h0 ← IV

For i = 0, . . . , ⌊log2(ℓ)⌋ do
µi ← RO1(K, m, 〈i〉)

For i = 1 . . . ℓ do
gi ← hi−1 ⊕ µν(i) ; hi ← F(K, mi‖gi)

Return hℓ .

m1 m2

hℓ

FK
FKFK

IV

µν(1)µν(1) µν(ℓ)

mℓ‖RO2(m, 〈λ〉, 〈1〉)‖...

. . . .

Figure 2: The ROX Construction. On the left we give the algorithmic description of ROX. The figure on the
right is the graphic representation of ROX. The message is padded with bits generated by RO2(K, m, 〈λ〉, 〈i〉),
where m are the first k bits of M . The last block must contain at least 2n padding bits, otherwise an extra
padding block is added. In the picture above, IV is the initialization vector, ν(i) is the largest integer j such that
2j|i, and the masks µi ← RO1(K, m, 〈i〉).

We want to stress that that the ROX construction does not require that the compression function
accept an additional input that might be influenced by the attacker (such as a salt or a counter). We
see this as an important advantage, since imposing additional requirements on the compression function
may make compression functions even harder to design or less efficient.

It is quite standard in cryptography for new primitives to first find instantiations in the random
oracle model, only much later to be replaced with constructions in the standard model. It is interesting
to see how the random oracles in the ROX construction can be instantiated if one were to implement
it in practice. For an 80-bit security level, our results suggest that we should take k = 80 and n = 160.
This means that we need a random oracle that reduces about 170 bits to 160 bits. A first suggestion is
to re-use the compression function with, say, three times as many rounds as normal, and with different
values of the constants. This approach violates good cryptographic hygiene, however, by having the
design of the random oracle depend on that of the surrounding scheme. A better proposal is to use one
or more calls to a blockcipher like AES that is designed independently of the compression function.

5 Properties Preserved by the ROX Construction

The following theorem states that the ROX construction preserves all seven security properties that we
consider here. We give a proof sketch for the preservation of Coll and a full proof for aSec below; the
other proofs can be found in Appendix B. We only note that the proofs for Sec, aSec and eSec are in
the programmable random oracle model [Nie02]; that for the case of Pre and aPre non-programmable
random oracles suffice; and that Coll and ePre are preserved in the standard model.

Theorem 5.1 For atk ∈ {Coll,Sec, eSec, aSec,Pre, ePre, aPre}, if the compression function F : {0, 1}k×
{0, 1}b+n → {0, 1}n is (t′, ǫ′) atk-secure, then the iterated function ROX F is (t, qRO, ǫ) atk-secure for

ǫ = ǫ′ +
q2
RO

22n
, t = t′ − 2ℓ · τF for atk = Coll (2)

ǫ = ℓ · ǫ′ +
q2
RO

22n
, t = t′ − 2ℓ · τF for atk = Sec (3)

ǫ = ℓ · ǫ′ +
qRO

2k
+

q2
RO

22n
, t = t′ − 2ℓ · τF for atk = eSec (4)

ǫ = ℓ · ǫ′ +
qRO

2k
+

q2
RO

22n
, t = t′ − 2ℓ · τF for atk = aSec (5)

ǫ = ǫ′ , t = t′ − ℓ · τF for atk ∈ {Pre, ePre} (6)

ǫ = ǫ′ +
qRO

2k
, t = t′ − ℓ · τF for atk = aPre (7)

Here, τF is the time required for an evaluation of F and ℓ = ⌈(λ + 2n)/b⌉ where λ = |M |.

11

We repeat that above we do not model the compression function as a random oracle, but it is
worth considering what the equations tell us if we do. Assuming for simplicity that τF = 1, we know
that a collision adversary running in t′ = 2n/2 steps has probability about 1/2 to find collisions in
F, due to the birthday paradox, but only has probability ǫ′ = 2−n/2 to find preimages or second
preimages. Nevertheless, existing iterations cannot guarantee (second) preimage resistance against
2n/2-time adversaries, because they merely inherit their (second) preimage resistance by implication
from collision resistance.2 The ROX construction, on the other hand, can. Assuming that queries to
RO1,RO2 take unit time and taking k = n, Equations (2), (3), (6) imply that an adversary running in
time t = 2n/2 − 2ℓ ≈ 2n/2 steps has probability at most ǫ = ℓ · 2−n/2 + 2n/2−k + 2−n ≈ (ℓ + 1) · 2−n/2 to
find second preimages, and has probability at most ǫ′ = 2−n/2 + 2n/2−n ≈ 2−n/2+1 to find preimages.

An interesting question is whether Equation (3) implies that ROX protects against the attack by
Kelsey and Schneier [KS05] that finds second preimages in SMD for a 2κ-block message in κ · 2n/2+1 +
2n−κ+1 time. On the positive side, the same attack does not seem to extend to ROX, because no two
consecutive blocks are ever processed using the same masks. To the best of our knowledge, the only
way to build the expandable message structure without ruining the mask schedule is by computing
κ-multi-collisions instead of collisions, which come at a cost of 2(κ−1)n/κ each. On the negative side,
Equation (3) loses a factor ℓ in the reduction, so in principle it cannot exclude the existence of a Sec
attack for 2n/2-block messages in 2n/2 work. It does however exclude such attacks for short messages.
As shown in Section 3, SMD cannot provide such a guarantee.

Proof of Equation (2): If M,M ′ is a pair of colliding messages, then consider the two chains of
compression function calls in the computation of ROX F(K,M) = ROX F(K,M ′). If the inputs to the
final call to F are different for M and M ′, then these inputs form a collision on F and we’re done. If they
are the same, then remember that at least 2n bits of these inputs are the output of RO2(m, 〈λ〉, 〈i〉)
and RO2(m

′, 〈λ′〉, 〈j〉), respectively. If these are different queries to RO2, yet their outputs are the
same, then the adversary must have found a collision on RO2; the odds of it doing so are bounded
by q2

RO/22n. If these queries are the same, however, then we have that m = m
′ and λ = λ′, and

therefore that the masks in both chains µi = µ′
i = RO1(K,m, 〈i〉). Identical chaining inputs to ℓ-th

call to F must therefore be caused by identical outputs of the (ℓ − 1)-st call to F. If the inputs to the
(ℓ − 1)-st call are different then we have a collision on F here, otherwise we repeat the argument to
the (ℓ − 2)-nd call, and so on. A collision on F will be found unless M = M ′. More formally, given
a Coll adversary A against ROX F, we will construct a Coll adversary B against F. On input key K,
B runs A on the same key K to obtain two distinct messages M and M ′, responding to A’s random
oracle queries by means of the subroutines RO-Sim1,RO-Sim2 depicted in Figure 3. Let the messages
be parsed as m1‖ . . . ‖mℓ ← rox-padRO2(M) and m′

1‖ . . . ‖m
′
ℓ′ ← rox-padRO2(M ′). Let m,m′ be the first

k bits of M,M ′, respectively, and let gi, hi and g′i, h
′
i be the intermediate values obtained during the

computation of ROX RO1,RO2

F (K,M) and ROX RO1,RO2

F (K,M ′), i.e. h0 = h′
0 = IV and

gi = hi−1 ⊕ µν(i) , hi = F(K,mi‖gi) where µν(i) = RO1(K,m, 〈ν(i)〉)

g′i = h′
i−1 ⊕ µ′

ν(i) , h′
i = F(K,mi‖g

′
i) where µ′

ν(i) = RO1(K,m′, 〈ν(i)〉) .

If A is successful, then we know that hℓ = h′
ℓ′ . If mℓ‖gℓ 6= m′

ℓ′‖g
′
ℓ′ , then these two strings form a

pair of colliding inputs to F(K, ·) that B can output. Otherwise, we have that mℓ = m′
ℓ′ . Due to the

padding algorithm, each of these strings contains at least one complete 2n-bit random oracle response
RO2(m, 〈|M |〉, 〈i〉) and RO2(m

′, 〈|M ′|〉, 〈i〉). If these are different queries to RO2, then the fact that

2For the Prefix-free MD [CDMP05] and EMD [BR06] iterations this is a bit paradoxical, because they were designed
to preserve “random oracle behavior”. Surely, (second) preimage resistance should fall under any reasonable definition of
“random oracle behavior”? The caveat here is that the proof [BR06, Theorem 5.2] bounds the distinguishing probability
to O(q2

RO/2n), so that the theorem statement becomes moot for qRO = 2n/2.

12

mℓ = m′
ℓ′ implies that A found a collision in RO2, in which case B aborts. The probability that A does

so using qRO random oracle queries however is at most qRO(qRO − 1)/22n+1 ≤ q2
RO/22n. So most likely

these will actually be identical random oracle queries, meaning that |M | = |M ′| = λ and m = m
′. This

means that ℓ = ℓ′ and that µν(ℓ) = µ′
ν(ℓ); hence, the fact that gℓ = g′ℓ implies that hℓ−1 = h′

ℓ−1.

We can now repeat the same argument for hℓ−1 and h′
ℓ−1. If mℓ−1‖gℓ−1 6= m′

ℓ−1‖g
′
ℓ−1, then these strings

form a pair of colliding inputs to F(K, ·). If they are equal, then because again the masks are the
same, it must hold that hℓ−2 = h′

ℓ−2. We can continue this argument for mℓ−2‖gℓ−2 and m′
ℓ−2‖gℓ−2 and

propagate from right to left throughout the chain. However, there must exist an index I > 0 such that
hI = h′

I but mI‖gI 6= m′
I‖g

′
I , because otherwise M = M ′ and the collision is not valid.

Let abort be the event that B aborts. It is clear that B wins whenever A wins and B does not abort,
meaning that it is successful with probability at least

ǫ′ ≥ Pr [A wins ∧ abort]

= Pr [A wins : abort] · Pr [abort]

≥ ǫ

(

1−
q2
RO

22n

)

≥ ǫ−
q2
RO

22n
.

The running time of B is that of A plus up to 2ℓ compression function evaluations.

Proof of Equation (5): Given an aSec[λ] adversary A against ROX F for any λ ∈ N, we will construct
an aSec adversary B against F. The overall strategy will be that B “embeds” his own challenge message
at a random point in the chain, and hopes that A’s output yields a second preimage at exactly the point
in the chain where B has embedded his challenge.

Algorithm B runs A to obtain a key K ∈ {0, 1}k , responding to its random oracle queries by maintaining
associative arrays T1[·],T2[·]. B outputs the same key K and is then given as input a random challenge

message m‖g ∈ {0, 1}b+n. It chooses a random index i∗
$

← {1, . . . , ℓ = ⌈(λ + 2n)/b⌉}. We first explain
how B can construct a message M of length λ so that mi∗ = m in m1‖ . . . ‖mℓ ← rox-padRO2(M); the
rest of the message blocks are randomly generated. After that, we will show how g can be embedded
into the chain such that gi∗ = g. If i∗ = 1 then B sets m to the first k bits of m, otherwise it chooses

m
$

← {0, 1}k and sets the first k bits of M to m. We distinguish between Type-I message blocks that
only contain bits of M , Type-II message blocks of which the first λb = (λ mod b) bits are the last
λb bits of M and the remaining bits are generated by RO2, and Type-III message blocks that consist
entirely of bits generated by RO2. Embedding m in a Type-I message block can simply be done by
setting b bits of M to m starting at bit position (i∗ − 1)b + 1. To embed m in a Type-II message
block, B sets the last λb bits of M to the first λb bits of m, and programs the first (b − λb) bits of
T2[m, 〈λ〉, 〈1〉] ‖ T2[m, 〈λ〉, 〈2〉] ‖ . . . to be the last (b − λb) bits of m. For Type-III blocks, B chooses
M completely at random and sets b bits of T2[m, 〈λ〉, 〈1〉] ‖ T2[m, 〈λ〉, 〈2〉] ‖ . . . to m, starting at the
(b−λb + 1)-st bit position. Bits of M and T2[m, ·] that are still undefined are chosen at random. If any
of these table entries were defined during A’s first run, then B aborts. Notice however that A’s view
during the first run is independent of m, so its probability of making such a query is at most qRO/2k.

To enforce that gi∗ = g in the computation of ROX RO1,RO2

F (K,M), algorithm B runs the reconstruction
algorithm of [Sho00, Mir01] that, given message blocks m1, . . . ,mi∗ and chaining value gi∗ , outputs
random mask values µ0, . . . , µt such that the chaining input to the i∗-th compression function call is
gi∗ . (We recall this algorithm in Figure 3 in appendix.) B’s goal is to program these masks into RO1 by
setting T1[K,m, 〈i〉] ← µi for 0 ≤ i ≤ t, such that it is possible to check that the value for gi∗ obtained
during the hash computation is indeed g. However, if any of the hash table entries T1[K,m, 〈i〉] for
0 ≤ i ≤ t has already been defined, then B aborts. This can only occur when A asked a query

13

RO1(K,m, 〈i〉) during its first phase, but again, the probability of it doing so is at most qRO/2k because
its view is independent of m.

Algorithm B then runs A again on input target message M , responding to its random oracle queries
as before, until it outputs a second preimage M ′. Let m′

0‖ . . . ‖m
′
ℓ′ ← rox-padRO2(M ′) be the parsed

messages. For the same arguments as in the proof of Equation (2) above, there must exist an index
I > 0 such that hI = h′

I but mI‖gI 6= m′
I‖g

′
I , unless A found a collision in the random oracle RO2. If

i∗ = I, then B outputs m′
I‖g

′
I .

B wins the game whenever A does and i∗ = I, unless A succeeded in causing a collision in RO2 or any
of the values that are programmed in RO1,RO2 were already queried. Let E1 be the event that at
least one of the preprogrammed values is queried by A on a different input and E2 be the event that A

manages to find at least one collision in RO2. Let abort be the event that B aborts, then

Pr [abort] = Pr [E1] + Pr
[

E2 : E1

]

≤ Pr [E1] + Pr [E2] .

Since B perfectly simulates A’s environment, the advantage of B is given by

ǫ′ ≥ Pr [A wins ∧ i∗ = I : abort] · Pr [abort]

≥
ǫ

ℓ

(

1−

(

qRO

2k
+

q2
RO

22n

))

≥
1

ℓ

(

ǫ−
qRO

2k
−

q2
RO

22n

)

.

The running time of B is that of A plus at most 2ℓ evaluations of F. Equation (5) follows.

Proof of Equation (6): Here we present the proof for Pre preservation. Given a Pre[λ] adversary
A against ROX F, we construct a Pre adversary B against F. B, on input a key K and a target value
Y ∈ {0, 1}n, runs A on the same input K,Y . Note that the target hash value Y = F(K,m‖g) for
randomly chosen m‖g ∈ {0, 1}b+n and K ∈ {0, 1}k, and it also has the correct distribution for A (in A’s
game Y is computed on inputs a random message block and the one-but-last chaining output in the
computation of ROX F XORed with a random mask string).

To simulate the responses of A’s random oracle queries, B runs algorithms RO-Sim1 and RO-Sim2 as
specified in Figure 3. Unlike the aSec and eSec games, adversary B here does not need to program any of
the entries in either table. Next, B obtains a preimage M ′ from A such that ROX RO1,RO2

F (K,M ′) = Y .
Let m′

1‖ . . . ‖m
′
ℓ′ ← rox-padRO2(M ′), and let h′

ℓ′−1 be the output of the one-but-last compression function

call in the computation of ROX RO1,RO2

F (K,M ′). Let g′ℓ′ = h′
ℓ′−1 ⊕ RO1(K,m′, ν(ℓ′)) where m

′ are the
first k bits of M ′. Finally, B outputs m′

ℓ′‖g
′
ℓ′ as its own valid preimage. B wins the game whenever A

does, so its advantage is ǫ′ ≥ ǫ. The running time of B is that of A plus at most ℓ evaluations of F.
The rest of the proofs for the ROX construction are presented in Appendix B.

Possible tweaks. The scheme can be simplified not all seven properties need to be preserved. For
example, if the key K is dropped from the input to RO1, the ROX construction fails to preserve eSec
and ePre, but still preserves all other notions. Dropping the message bits m from the input of either
RO1 or RO2 destroys the preservation of aSec and aPre, but leaves the preservation of other notions
unharmed.

Acknowledgements

We would like to thank David Cash and the anonymous referees for their useful feedback. This work
was supported in part by the European Commission through the IST Programme under Contract
IST-2002-507932 ECRYPT, and in part by the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy). The first author is supported by a Ph.D. Fellowship and the second by
a Postdoctoral Fellowship from the Flemish Research Foundation (FWO - Vlaanderen). The fourth
author was supported by NSF CNS-0627752.

14

References

[ANPS07a] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-property-
preserving iterated hashing: ROX. In Kaoru Kurosawa, editor, Advances in Cryptology
– ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 130–146,
Kuching, Malaysia, December 2–6, 2007. Springer-Verlag, Berlin, Germany. (Cited on page i.)

[ANPS07b] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Three-property
preserving iterations of keyless compression functions. ECRYPT Hash Workshop 2007,
2007. (Cited on page 2.)

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109
of Lecture Notes in Computer Science, pages 1–15, Santa Barbara, CA, USA, August 18–22,
1996. Springer-Verlag, Berlin, Germany. (Cited on page 3.)

[BD06] Eli Biham and Orr Dunkelman. A framework for iterative hash functions – HAIFA. Second
NIST Cryptographic Hash Workshop, 2006. (Cited on pages 3 and 8.)

[BJ01] Daniel R. L. Brown and Donald B. Johnson. Formal security proofs for a signature scheme
with partial message recovery. In David Naccache, editor, Topics in Cryptology – CT-
RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 126–142, San Fran-
cisco, CA, USA, April 8–12, 2001. Springer-Verlag, Berlin, Germany. (Cited on page 1.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93: 1st Conference on Computer and Communications
Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press. (Cited on

page 1.)

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 470–484, Santa Barbara, CA, USA,
August 17–21, 1997. Springer-Verlag, Berlin, Germany. (Cited on pages 1, 2, 3, 5, 7, 8, 9, 10

and 20.)

[BR06] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain extension:
The EMD transform. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology –
ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314,
Shanghai, China, December 3–7, 2006. Springer-Verlag, Berlin, Germany. (Cited on pages 3,

8 and 12.)

[BR07] Mihir Bellare and Thomas Ristenpart. Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In L. Arge, C. Cachin, and A. Tarlecki, editors, 34th Interna-
tional Colloquium on Automata, Languages and Programming – ICALP 2007, volume 4596
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2007. (Cited on

page 3.)

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damg̊ard revisited: How to construct a hash function. In Victor Shoup, editor, Advances
in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
430–448, Santa Barbara, CA, USA, August 14–18, 2005. Springer-Verlag, Berlin, Germany.
(Cited on pages 3, 8 and 12.)

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003. (Cited on page 1.)

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
416–427, Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag, Berlin, Germany.

15

(Cited on pages 1, 3 and 5.)

[Dea99] Richard D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton Univer-
sity, 1999. (Cited on pages 1 and 8.)

[HK06] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized hashing.
In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 41–59, Santa Barbara, CA, USA, August 20–24, 2006.
Springer-Verlag, Berlin, Germany. (Cited on pages 3 and 8.)

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus
attack. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 183–200, St. Petersburg,
Russia, May 28 – June 1, 2006. Springer-Verlag, Berlin, Germany. Available from
http://eprint.iacr.org/2005/281. (Cited on pages 3 and 8.)

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 474–490, Aarhus, Denmark,
May 22–26, 2005. Springer-Verlag, Berlin, Germany. (Cited on pages 1, 8 and 12.)

[LCL+03] Wonil Lee, Donghoon Chang, Sangjin Lee, Soo Hak Sung, and Mridul Nandi. New parallel
domain extenders for UOWHF. In Chi-Sung Laih, editor, Advances in Cryptology – ASI-
ACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 208–227, Taipei,
Taiwan, November 30 – December 4, 2003. Springer-Verlag, Berlin, Germany. (Cited on

page 9.)

[LM92] Xuejia Lai and James L. Massey. Hash functions based on block ciphers. In Rainer A.
Rueppel, editor, Advances in Cryptology – EUROCRYPT’92, volume 658 of Lecture Notes
in Computer Science, pages 55–70, Balatonfüred, Hungary, May 24–28, 1992. Springer-
Verlag, Berlin, Germany. (Cited on page 1.)

[LR89] Michael Luby and Charles Rackoff. A study of password security. Journal of Cryptology,
1(3):151–158, 1989. (Cited on page 1.)

[Luc05] Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K. Roy,
editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 474–494, Chennai, India, December 4–8, 2005. Springer-Verlag,
Berlin, Germany. (Cited on page 3.)

[Mer80] Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security
and Privacy, pages 122–134. IEEE Computer Society Press, 1980. (Cited on pages 3 and 9.)

[Mer90a] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 218–
238, Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag, Berlin, Germany.
(Cited on page 1.)

[Mer90b] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
428–446, Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag, Berlin, Germany.
(Cited on page 3.)

[Mir01] Ilya Mironov. Hash functions: From Merkle-Damg̊ard to Shoup. In Birgit Pfitzmann,
editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in
Computer Science, pages 166–181, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag,
Berlin, Germany. (Cited on pages 1, 2, 3, 13 and 22.)

[Mir06] Ilya Mironov. Collision-resistant no more: Hash-and-sign paradigm revisited. In Moti
Yung, editor, PKC 2006: 9th International Workshop on Theory and Practice in Public
Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 140–156, New

16

http://eprint.iacr.org/2005/281

York, NY, USA, April 24–26, 2006. Springer-Verlag, Berlin, Germany. (Cited on page 3.)

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126, Santa
Barbara, CA, USA, August 18–22, 2002. Springer-Verlag, Berlin, Germany. (Cited on

page 11.)

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43,
Seattle, Washington, USA, May 15–17, 1989. ACM Press. (Cited on page 1.)

[Rog06] Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without the
keys. In Vietcrypt 2006, volume 4341 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 2006. (Cited on page 2.)

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and col-
lision resistance. In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption 2004,
volume 3017 of Lecture Notes in Computer Science, pages 371–388. Springer-Verlag, Berlin,
Germany, 2004. (Cited on pages i, 1, 2, 3, 4 and 5.)

[Sar05] Palash Sarkar. Masking-based domain extenders for UOWHFs: bounds and constructions.
IEEE Transactions on Information Theory, 51(12):4299–4311, 2005. (Cited on page 9.)

[Sho00] Victor Shoup. A composition theorem for universal one-way hash functions. In Bart Preneel,
editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 445–452, Bruges, Belgium, May 14–18, 2000. Springer-Verlag,
Berlin, Germany. (Cited on pages 1, 2, 3, 8 and 13.)

[WG00] David Wagner and Ian Goldberg. Proofs of security for the Unix password hashing algo-
rithm. In Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume
1976 of Lecture Notes in Computer Science, pages 560–572, Kyoto, Japan, December 3–7,
2000. Springer-Verlag, Berlin, Germany. (Cited on page 1.)

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 19–35, Aarhus, Denmark, May 22–26, 2005. Springer-
Verlag, Berlin, Germany. (Cited on page 1.)

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 17–36, Santa Barbara, CA, USA, August 14–18, 2005.
Springer-Verlag, Berlin, Germany. (Cited on page 1.)

17

A Proofs and Counterexamples for Existing Constructions

A.1 Proof of Counterexample CE1

Lemma A.1 If G is (t′, ǫ′) atk-secure for some atk ∈ {Sec, aSec,Pre, aPre}, then CE1 is (t, ǫ) atk-secure
for all ǫ = ǫ′ + 1/2n and t = t′.

Proof: We present the proofs for the case of Sec and Pre separately here. Those of aSec and aPre are
almost identical and therefore omitted.

atk = Sec Given an adversary A that (t, ǫ)-breaks the Sec-security of CE1, we build an adversary B

against the Sec-security of G. Algorithm B, on input a random message M = m‖h ∈ {0, 1}b+n and a
random key K ∈ {0, 1}k , runs A on the same input (M,K). B obtains A’s second preimage M ′ = m′‖h′

and outputs it as its own colliding message. We say that M is in Case 1 if h = IV and in Case 2 if
h 6= IV ; Cases 1 and 2 for M ′ are defined analogously. If A is successful, i.e. CE1(K,M) = CE1(K,M ′)
and M 6= M ′, then M and M ′ must be in the same case, due to the last bit of the hash value being
different in both cases. Since M is chosen at random, it is only in Case 1 with probability 1/2n. If
M and M ′ are both in Case 2 then we must have that G(K,M) = G(K,M ′), so M ′ is a valid second
preimage for M with respect to G(K, ·). The running time of B is equal to that of A since all it does is
relaying inputs and outputs. Its advantage is given by

AdvG
Sec(B) = Pr [A wins ∧ h 6= IV]

≥ Pr [A wins]− Pr [h = IV]

= AdvCE1

Sec (A)− 1/2n .

atk = Pre Given a Pre-adversary A against CE1, we build a Pre-adversary B against G. Algorithm B,
on input a random key K and a hash value Y ← G(K,M) for a random message M , runs A with input
Y ‖IVn to obtain a preimage M ′. B returns M ′ as its own output.

Let M = m‖h be the message chosen at random by the experiment. (Note that B only sees the hash
value Y , not M itself.) When h 6= IV , the input to A is correctly distributed and B wins its game
whenever A does. In the event where h = IV however, the input to A is not correctly distributed: it is
given G(K,M)‖IV n, while it should be given CE1(K,M) = IV . This event only occurs with probability
1/2n, and thus yields

AdvG
Pre(B) ≥ AdvCE1

Pre (A)− 1/2n .

The running time of B is simply equal to that of A.

A.2 Proof of Counterexample CE2

Lemma A.2 For any atk ∈ {Coll, eSec}, if G is (t′, ǫ′) atk-secure, then CE2 is (t, ǫ) atk-secure for all
ǫ = ǫ′ and t = t′.

Proof: We present the proofs for Coll and eSec separately.

atk = Coll Given an adversary A that (t, ǫ)-breaks the Coll-security of CE2, we build the following
adversary B against the Coll-security of G. Algorithm B, on input a random key K, runs A on input
the same key K, to obtain distinct colliding messages M and M ′ from A. B outputs M and M ′ as its
own colliding pair. We claim that B succeeds whenever A does, or that G(K,M) = G(K,M ′) whenever
CE2(K,M) = CE2(K,M ′).

18

To see this, consider the following cases for (K,M). We say that (K,M) is in Case 1 if M = 010b−2‖IV ;
in Case 2 if K(1) = 0 and M = 〈1〉b‖IV , or if K(1) = 1 and M = 〈b + 1〉b‖IV ; and in Case 3 otherwise.
Cases 1, 2, and 3 for (K,M ′) are defined analogously. For M and M ′ to collide, (K,M) and (K,M ′)
have to be in the same case, because the last two bits of the hash value are different for different cases.
They cannot be both in Case 1, because then M = M ′. They cannot be both in Case 2, because for a
single value of K that would mean M = M ′ as well. So they have to be both in Case 3, which means
that G(K,M) = G(K,M ′), so M,M ′ is a valid collision on G(K, ·). Thus, we measure the advantage
of B by

AdvG
Coll(B) ≥ AdvCE2

Coll (A) .

The running time of B is equal to that of A since all it does is relaying inputs and outputs.

atk = eSec Given an eSec adversary against CE2, we build an eSec adversary B against the compression
function G. B runs A to obtain a target message M and outputs the same message as its target. On
obtaining a random key K ∈ {0, 1}k , B runs A on the same key K until it outputs its colliding message
M ′. B outputs the same M ′ as its second preimage.

By a case analysis similar to that for the case of Coll above, one can show that that G(K,M) = G(K,M ′)
whenever CE2(K,M) = CE2(K,M ′), and hence that

AdvG
eSec(B) ≥ AdvCE2

eSec(A) .

The running time of B is the same as that of A.

A.3 Proof of Counterexample CE3

Lemma A.3 If G is (ǫ′, t′) atk-secure for some atk ∈ {Sec,Pre} then CE3 is (t, ǫ) atk-secure for all
ǫ = ǫ′ + 1/2b and t = t′.

Proof: We prove the lemma for atk = Sec and atk = Pre separately.

atk = Sec Given an adversary A that (t, ǫ)-breaks the Sec-security of CE3, consider the following ad-
versary B against the Sec-security of G. Algorithm B, on input a random key K ∈ K and a ran-
dom message m‖h ∈ {0, 1}b+n, runs A on the same input (K,m‖h) to obtain a second preimage
M ′. B returns the same message m′‖h′ as its own second preimage. If A is successful, meaning that
CE4(K,m‖h) = CE4(K,m′‖h′) and m‖h 6= m′‖h′, we distinguish between the case that m = 〈λ〉b and
the case that m 6= 〈λ〉b. In the former case, CE3(K,m‖h′) = 0n for any h′ ∈ {0, 1}n, but since m is
chosen at random, this case only occurs with probability 1/2b. In the latter case, we also have that
m′ 6= 〈λ〉b because otherwise the last bits of the hashes are different. Therefore, we must have that
G(K,m‖h) = G(K,m′‖h′).

The running time of B is the same as that of A since all it does is relaying inputs and outputs. It is
clear that B wins whenever A wins and B does not abort, meaning that it is successful with probability

AdvG
Sec(B) ≥ Pr [A wins ∧ m 6= 〈λ〉b]

≥ AdvCE3

Sec (A)−
1

2b
.

atk = Pre Given a Pre-adversary A against CE3, we construct the following Pre-adversary B against G.
Algorithm B, on input a random key K and a hash value Y ← G(K,m‖h) (computed for random K
and m‖h), runs A on input Y ‖1 to obtain a preimage m′‖h′. B returns m′‖h′ as its own preimage.

19

It is easy to see that when m 6= 〈λ〉b, then the input to A is correctly distributed and B wins its game
whenever A does. In the event that m = 〈λ〉b, the input to A is not correctly distributed, but this only
occurs with probability 1/2b, thus yielding

AdvG
Pre(B) ≥ AdvCE3

Pre (A)− 1/2b .

A.4 Proofs for Strengthened Merkle Tree and Counterexample CE4

Theorem A.4 If F is (t′, ǫ′) Coll-secure, then SMT F is (t, ǫ) Coll-secure for ǫ = ǫ′ and t = t′ − 2ℓ · τF.

Proof: Given a Coll-adversary A against SMT F, we build the following Coll-adversary B against the
Coll-security of F. On input a key K, B runs A on the same input. A then outputs distinct colliding
messages M and M ′. Let hi,j and h′

i,j be the intermediate hash values generated in the computation

of SMT (K,M) = hd+1,1 and SMT (K,M ′) = h′
d′+1,1 as depicted in Figure 1. If |M | 6= |M ′|, then

(hd,1‖〈|M |〉(a−1)n) 6= (h′
d′,1‖〈|M

′|〉(a−1)n) form a valid pair of colliding messages for F(K, ·). Else if |M | =
|M ′|, then the generated trees for M and M ′ are of equal depth d = d′. If hd 6= h′

d′,1 then B proceeds as in
the previous case. Otherwise, it goes up one level. If hd−1,1‖ . . . ‖hd−1,a 6= h′

d−1,1‖ . . . ‖h
′
d−1,a, then these

are a valid collision. Otherwise, it goes up another level and checks whether hd−2,(i−1)a+1‖ . . . ‖hd−2,ia 6=
h′

d−2,(i−1)a+1‖ . . . ‖h
′
d−2,ia for some 1 ≤ i ≤ n. If so, then these form a colliding pair. This process

continues until a colliding pair is found, which must happen unless M = M ′. The running time of B

equals that of A plus up to 2ℓ compression function evaluations.

Theorem A.5 For k ∈ N, if there exists a (t′, ǫ′) eSec-secure compression function G : {0, 1}k ×
{0, 1}an → {0, 1}n−k , then there exists a (t, ǫ) eSec-secure compression function CE6 : {0, 1}k ×
{0, 1}an → {0, 1}n with ǫ = ǫ′ +1/2k−1, t = t′. There exists an adversary running in constant time with
eSec[λ]-advantage 1− 1/2k in breaking MT CE6

for some λ ∈ N.

Proof: Given the compression function G, consider CE6 given by

CE6(K,m1‖m2) = 1n if m1 = K
= K‖G(K,m1‖m2) otherwise ,

where |m1| = k and |m2| = 2n− k.

Lemma A.6 If G is (ǫ′, t′) eSec- secure then CE4 is (t, ǫ) eSec-secure for all ǫ = ǫ′ + 1/2k−1 and t = t′.

The only difference with the counterexample of [BR97] is the placement of the key inside the hash (at
the beginning instead of at the end). Their proof is easily seen to extend to the lemma above. When
iterated as SMT CE4

, one can see that any message of length a2i − 1 ≤ λ ≤ a2i+1 − 2 for i ∈ N hashes
to 1n, leading to easy constant-time eSec attacks.

Lemma A.7 If G is (ǫ′, t′) atk secure for some atk ∈ {Sec, aSec,Pre, aPre} then CE4 is (t, ǫ) atk-secure
for all ǫ = ǫ′ + 1/2n−1 and t = t′.

20

Proof: We prove the lemma for atk = Sec and atk = Pre separately. The proofs for aSec and aPre-
security are almost identical, and they are omitted here.

atk = Sec Given an adversary A that (t, ǫ)-breaks the Sec-security of CE4, consider the following ad-
versary B against the Sec-security of G. Algorithm B, on input a random key K ∈ K and a random
message M = m1‖ . . . ‖ma ∈ {0, 1}

an and , runs A on the same inputs to obtain a second preimage
M ′ = m′

1‖ . . . ‖m
′
a. B returns the same message as its own preimage. If A is successful, meaning that

CE4(K,M) = CE4(K,M ′) and M 6= M ′, we distinguish between the cases that (1) ma = 0n, that (2)
ma−1 = 0n and ma 6= 0n, and (3) that ma−1 6= 0n and ma 6= 0n. Since M is chosen at random, the
first two cases happen with probability 1/2n each. In the third case, we also have that m′

a−1 6= 0n and
m′

a 6= 0n, because otherwise the last two bits of the hashes of M and M ′ are different. Therefore, we
have that G(K,M) = G(K,M ′), so B can output M ′ as its own second preimage. The running time of
B is equal to that of A since all it does is relaying inputs and outputs. The advantage of B is that of A

minus the probability that we end up in cases (1) or (2), i.e. ǫ′ ≥ ǫ− 2/2n.

atk = Pre Given a Pre-adversary A against CE4, we construct the following Pre-adversary B against G.
Algorithm B, on input a random key K and a hash value Y ← G(K,M) (computed for random M and
K), runs A on input Y ‖10 to obtain a preimage M ′. B returns M ′ as its own preimage.

Let M = m1‖ma be the message chosen at random by the experiment. It is easy to see that when
ma−1 6= 0n and ma 6= 0n, then the input to A is correctly distributed and B wins its game whenever
A does. Otherwise, the input to A is not correctly distributed, because the target value should be
CE4(K,M) = 1n or CE4(K,M) = 0n. These events only occur with probability 1/2n each, thus
yielding ǫ′ ≥ ǫ− 2/2n. The running time of B is simply equal to that of A.

A.5 Proof of Counterexample CE5

Lemma A.8 For any atk ∈ {Coll, eSec}, if G is (t′, ǫ′) atk-secure then CE5 is (t, ǫ) atk-secure for all
ǫ = ǫ′ and t = t′.

Proof: We first describe the reductions for both Coll and eSec, and then explain why they are successful.
For the case of Coll, given a Coll-adversary A against CE5, consider the Coll-adversary B against G that,

given a key K, runs M,M ′ $

← A(K) and outputs M,M ′. For the case of eSec, given an eSec-adversary
A against CE5, consider the eSec-adversary B against G that runs A to obtain a target message M from
A, and outputs M as its own target message. On obtaining a random key K, B runs A on input K until
it returns a second preimage M ′. B returns the same second preimage M ′.

We say that M is in Case 1 if CE5(K,M) = 10n−1, corresponding to the first line of CE5 above, in
Case 2 if CE5(K,M) = 1n, corresponding to the second line, and in Case 3 otherwise, corresponding to
the last line. The hash values of different cases are distinct, so for M,M ′ to be a valid collision, they
must be in the same case. They cannot be both in Case 1 or 2, because for a single key K there is only a
single message in each case. Therefore, they must both be in Case 3, so that CE5(K,M) = CE5(K,M ′)
implies that G(K,M) = G(K,M ′), meaning that M,M ′ is also a valid collision for G. Hence, B is
successful whenever A is. The running time of B is also equal to that of A.

B Proofs of the ROX Construction (Theorem 5.1)

Proof of Equation (3): Given a Sec[λ]-adversary A against ROX F, we build the following Sec-
adversary B against F. B is given as input a random key K ∈ {0, 1}k and challenge message m‖g ∈

21

Algorithm MaskRec(K, m1, . . . , mr, g)

j ← r ; For i = 0, . . . , t = ⌊log2 r⌋ do µi ← ⊥
Repeat while j > 0

j′ ← j − 2ν(j) ; g′
$
← {0, 1}n

For i = j′ + 1, . . . , j − 1 do if µi = ⊥ then µi
$
← {0, 1}n

If j′ = 0 then h0 ← IV else hj′ ← F(K, mj′‖g
′)

For i = j′ + 1, . . . , j − 1 do
gi ← hi−1 ⊕ µν(i) ; hi ← F(K, mi‖gi)

µν(j) ← gj−1 ⊕ g′ ; j ← j′ ; g ← g′

For i = 0, . . . , t do if µi = ⊥ then µi
$
← {0, 1}n

Return (µ0, . . . , µt)

Algorithm RO-Sim1(K, m, x)

If T1[K, m, x] = ⊥ then

T1[K, m, x]
$
← {0, 1}n

Return T1[K, m, x]

Algorithm RO-Sim2(m, x, y)

If T2[m, x, y] = ⊥ then

T2[m, x, y]
$
← {0, 1}2n

Return T2[m, x, y]

Figure 3: Algorithms used in the proofs of our construction. On the left, we recall the mask reconstruction
algorithm of [Mir01] (M is parsed as b-bit blocks). On the right, we give the algorithms used to simulate the
random oracles (m0 is the first s-bit block of M).

{0, 1}b+n. It chooses a random index i∗
$

← {1, . . . , ℓ = ⌈(λ + 2n)/b⌉}. If i∗ = 1, then m is set to equal

the first k bits of m; otherwise, B chooses m
$

← {0, 1}k and sets the first k bits of M to m. It also
maintains associative arrays T1[·],T2[·] to simulate A’s random oracle queries.

B needs to “embed” its own challenge message at a random point in the chain, and construct a full
target message M of length λ for A. B proceeds as shown in the Proof of Equation (5). To enforce that
gi∗ = g in the computation of ROX RO1,RO2

F (K,M), algorithm B runs the mask reconstruction algorithm

of Figure 3 to generate mask values (µ0, . . . , µt)
$

← MaskRec(K,m1, . . . ,mi∗ , g). It programs these into
RO1 by setting T1[K,m, 〈i〉] ← µi for 0 ≤ i ≤ t. This way, one can check that the value for gi∗ obtained
during the hash computation is indeed g. The difference from the aSec game in the Sec one is that B

programs the mask values into RO1 before A is run (thus A has not made any random oracle queries so
far) and B has no chance to abort here.

After generating M as a concatenation of random blocks with mi∗ = m, B runs A on inputs K and
mask values µ0 . . . µt to obtain a second preimage M ′. As explained in the Proof of Equation (5), in
the computation of ROX F messages M and M ′ collide, if a collision occurs either in the final F call for
|M | 6= |M ′| or for |m 6= m

′|, or in an internal F call for |M | = |M ′| and m = m
′. Note however that in

the former case B aborts when a collision in RO2 occurs. As shown in the Proof of Equation (5), this
happens only with probability less or equal than q2

RO/22n.

It is clear that B wins the game whenever A does and i∗ = I, unless A succeeded in causing a collision
in RO2. Let Coll be the event that A manages to find at least one collision in RO2. Since B perfectly
simulates A’s environment, the advantage of B given by

ǫ′ ≥ Pr
[

A wins ∧ i∗ = I ∧ Coll
]

= Pr
[

A wins ∧ i∗ = I : Coll
]

· Pr
[

Coll
]

≥
ǫ

ℓ

(

1−
q2
RO

22n

)

≥
1

ℓ

(

ǫ−
q2
RO

22n

)

.

The running time of B is that of A plus at most 2ℓ evaluations of F. Equation (3) follows.

Proof of Equation (4): Given an eSec-adversary A against ROX F, we build the following eSec-
adversary B against F. B runs A to obtain the target message M . Let |M | = λ and let m be the first k

22

bits of M . Throughout this game B simulates the answers to A’s queries to RO1 and RO2 by running
algorithms RO-Sim1 and RO-Sim2 as specified in Figure 3.

B chooses an index i∗
$

← {1, . . . , ℓ = ⌈(λ + 2n)/b⌉}. As its challenge message m‖g, B sets m to be the

i∗-th message block of m1‖ . . . ‖mℓ where m1‖ . . . ‖mℓ ← rox-padRO2(M) and chooses g
$

← {0, 1}n. It
submits m‖g to the challenger and gets the compression function key K in exchange.

To enforce that g = gi∗ in the computation of ROX RO1,RO2

F (K,M), algorithm B runs the mask recon-

struction algorithm of Figure 3 to generate mask values (µ1, . . . , µt)
$

← MaskRec(K,m1, . . . ,mi∗ , g). It
programs these into RO1 by setting T1[K,m, 〈i〉] ← µi for 0 ≤ i ≤ t. This way, one can check that
the value for gi∗ obtained during the hash computation is indeed g. If any of the hash table entries
T1[K,m, 〈i〉] were already defined, then B aborts. This means that A was able to predict K though,
which happens with probability qRO/2k.

Algorithm B then runs A again on input K until it outputs its second preimage M ′. As explained
in the Proof of Equation (5), in the computation of ROX F messages M and M ′ collide, if a collision
occurs either in the final F call for |M | 6= |M ′| (or for m 6= m

′), or for an internal F call in the chain
for |M | = |M ′| and m = m

′. As shown in the Proof of Equation (5), whenever a collision in RO2 occurs
(padding collision), B aborts.

B wins the game whenever A does and i∗ = I, unless A succeeded in causing a collision in RO2 or any
of the mask values to be programmed in RO1 for a given input has been already output by the RO1 on
a different input, in which cases B aborts. Let E1 be the event that at least one of the preprogrammed
masks is queried on a different input and E2 be the event that A manages to find at least one collision
in RO2. Let abort be the event that B aborts, then

Pr [abort] = Pr [E1] + Pr
[

E2 : E1

]

≤ Pr [E1] + Pr [E2] .

Since B perfectly simulates A’s environment, the advantage of B is given by

ǫ′ ≥ Pr [A wins ∧ i∗ = I ∧ abort]

= Pr [A wins ∧ i∗ = I : abort] · Pr [abort]

≥ Pr [A wins ∧ i∗ = I : abort] · (1− (Pr [E1] + Pr [E2]))

≥
ǫ

ℓ

(

1− (
qRO

2k
+

q2
RO

22n
)

)

≥
1

ℓ

(

ǫ−
qRO

2k
−

q2
RO

22n

)

.

The running time of B is that of A plus at most 2ℓ evaluations of F. Equation (5) follows.

Proof of Equation (6): atk = ePre Given an ePre adversary A against ROX F, we construct an ePre
adversary B against F. B runs A to obtain target point Y , where Y ∈ {0, 1}n. B outputs the same
target value Y to get a random key input K ∈ {0, 1}k . On obtaining the same key K, A outputs a
preimage M ′, such that ROX RO1,RO2

F (K,M ′) = Y . B outputs m′
ℓ′‖g

′
ℓ′ as its own preimage. Here m′

ℓ′ ,
g′ℓ′ and the random oracle responses to A throughout the game are defined as in the proof of Pre above.
B wins the game whenever A does and and its advantage is ǫ′ ≥ ǫ. The running time of B is that of A

plus at most ℓ evaluations of F. Equation (6) follows.

Proof of Equation (7): Given an aPre[λ] adversary A against ROX F, we construct an aPre adversary
B against F for any λ ∈ N. B runs A to obtain a key K. To simulate the responses of A’s random oracle
queries, B runs algorithms RO-Sim1 and RO-Sim2 as specified in Figure 3. B also outputs a key K and

23

obtains a target point Y = F(K,m‖g) for a randomly chosen m‖g ∈ {0, 1}b+n. A gets the same target
point Y from B.

We have to argue why the target point Y is correctly distributed to serve as an input for A. Namely, A

expects a target point following the distribution induced by F(K,mℓ‖gℓ) where mℓ, gℓ are as obtained in
the computation of ROX RO1,RO2

F (K,M) for a random message M ∈ {0, 1}λ, while that of B is induced
by a random choice of mℓ, gℓ. These distributions can be seen to be identical when conditioned on the
event that A did not query RO1 or RO2 on the correct value for m, the first k bits of M , during its first
execution, which happens with probability at least 1− (qRO/2k). On input Y , algorithm A outputs a
preimage M ′ such that ROX RO1,RO2

F (K,M ′) = Y . B outputs m′
ℓ′‖g

′
ℓ′ as its own preimage, where m′

ℓ′ ,
g′ℓ′ are as defined in the Proof of Equation (7).

B wins the game whenever A does, unless the distribution of the target value Y for A differs from that
of B. Since that happens with probability only qRO/2k, we measure the advantage of B by

ǫ′ ≥ ǫ−
qRO

2k
.

The running time of B is that of A plus at most ℓ evaluations of F. Equation (7) follows.

24

	Introduction
	Security Definitions
	Properties Preserved by Existing Constructions
	Chaining Iterations
	Tree Iterations

	The ROX Construction
	Properties Preserved by the ROX Construction
	References
	Proofs and Counterexamples for Existing Constructions
	Proof of Counterexample CE1
	Proof of Counterexample CE2
	Proof of Counterexample CE3
	Proofs for Strengthened Merkle Tree and Counterexample CE4
	Proof of Counterexample CE5

	Proofs of the ROX Construction (Theorem 5.1)

