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Abstract

With the increasing importance of correctly handling privacy-sensitive data, significant work
has been put in expressing and enforcing privacy policies. Less work has been done however on
negotiating a privacy policy, especially if the negctiation process itself is considered privacy-sensitive.
In this paper, we present a formal definition of the mutually privacy-preserving policy negotiation
problem, i.e. the problem of negotiating what data will be revealed under what conditions, while no
party learns anything about the other parties’ preferences other than the outcome of the negotiation.

We validate the definition by providing a reference solution using two-party computation tech-
niques based on homomorphic encryption systems. Based on an evaluation of the efficiency of our
protocol in terms of computation, bandwidth and communication rounds, we conclude that our
solution is practically feasible for simple policies or high-bandwidth communication channels.
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1. Introduction

With the increasing amount of electronic data produced by day-to-day interactions, as well as the
ability to link or otherwise process this data, the handling of privacy-sensitive personal data has
emerged as an important field in computer security. Many online services require the user to submit
some information about himself (e.g. name, address, . . . ) in order to access the service. The type of
information to be provided is described in a policy.

Substantial work has been done on defining privacy policies (e.g. P3P [W3C02] and EPAL [BKBS04]),
and their enforcement [MPB03, BM05b, CV02]. Less work however has been done on policy negotia-
tion. Usually, it is assumed that both sides somehow agree on a common policy specifying what data
will be transmitted and how sensitive data should be handled. In various settings, this negotiation is
complicated by the effect that a person’s privacy preferences may already give away information about
that person. Since the vast majority of the population is still willing to reveal seemingly innocent data
(e.g. their consumption of alcohol), a person that considers this piece of data as sensitive might quickly
raise suspicion and consequently be treated with a worst-case assumption (e.g. that he’s an alcoholic).
One can argue that in the negotiation between a consumer and a Company or Government Entity, the
latter one has no right for privacy, and that transparency about the preferences is expected. However,
in a peer-to-peer scenario, e.g. between two consumers or two companies, it is important to protect
both sides.

Given that both parties’ preferences themselves are to be considered as private data, can they still
discover whether a matching policy exists, and if so, what this policy is? In this paper, we answer this
question in a positive way.

1.1. Our Contributions

We formally define the problem of negotiating a privacy policy from two sets of preferences, in such a
way that no party learns any information about the other’s preferences other than the policy agreed
upon. We then develop a concrete protocol by implementing (a special case of) the definition as a
boolean circuit, and using efficient two-party computation techniques based on threshold homomorphic
cryptosystems of [ST04] to evaluate it. Based on a detailed analysis of the efficiency of our protocol in
terms of bandwidth, rounds of communication and computational overhead, we conclude that while
this protocol is efficient enough for reasonably small policies, its overhead becomes prohibitive for
larger ones. Therefore, we see our protocol more as a proof-of-concept, and as a benchmark against
which the performance of future special-purpose protocols can be measured.

1.2. Related Work

Existing policy frameworks. The most common framework for privacy policy negotiation today is
the Platform for Privacy Preferences Project (P3P) [W3C02]. A P3P policy consists of a number of
attributes (e.g. the user’s name, address,. . . ), and the conditions tied to the user’s willingness to reveal
these attributes (e.g., it may not be forwarded to third parties, and has to be deleted once it is no
longer needed). P3P was designed with two goals in mind. Firstly, it creates transparency about an
organization’s privacy policy. It is required that both the overall policy and some details are provided
in a human-readable format, so every user can find out about the policy in an easy way.Secondly, it
allows for automatic comparison of the policies. A user can thus define his personal privacy policy,
and automatically get a warning if the policy of an organization he interacts with does not match
(assuming the organization does provide a P3P policy [AT&02]).

To reduce the initial complexity of the standard, the current version of P3P deliberately left out
any negotiation. Rather, the server simply reveals its policy, and the client then proceeds with the
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interaction, or not. In some sense, this does protect the client’s privacy, but the server’s policy is fully
exposed.

Our negotiation protocol can be used within the context of P3P, though some practical restrictions
may be necessary for efficiency reasons. The design of P3P is hierarchical in the sense that attributes
(e.g. first name, last name) can be contained in other attributes (e.g. name). In the non-private case,
this is not a problem – a policy may group attributes and thus not need to individually specify the
preferences for each and every attribute. Our protocol, however, cannot efficiently handle such groups,
as it makes the number of attributes too large to be practical. Also, P3P allows a policy designer to
freely define attributes. This poses a problem for automated systems such as ours, as a user may not
have predefined his preference on an attribute that the server defined.

In comparison with existing policy expression languages, some tradeoffs are required to satisfy the
strict security requirements of a protocol leaking no information. We do need, for example, a pre-
agreement on all data items and obligations that the policy can cover — it is not possible for a user
to individually extend the preferences by new data items, as this would already give away information
about his policy. Also, it is not clear whether hierarchical attributes can be used to improve efficiency
of the protocol, since a difference in overhead of the protocol execution would leak information about
the granularity of the parties’ preferences.

Another popular framework for the definition of privacy policies is the Enterprise Privacy Autho-
rization Language (EPAL) [BKBS04]. EPAL is designed as a back-end language to be used internally
inside an enterprise, allowing to automatically enforce its privacy rules. As such, EPAL allows a fine-
grained and flexible set of rules, which also represent the internal data flows within the corporation.
While the possibility to express complex policies makes EPAL interesting for secret negotiations, its
complexity makes it hard even to compare policies [BKBS04], let alone to negotiate them without
revealing any information about the preferences. Some work is done on an automatic conversion from
EPAL policies into a less precise format such as P3P, which would allow our protocol to be used in
such a setting as well.

The theoretical model for policy negotiations proposed by Yu et al. [YWS03] focuses on allowing
for a maximal independence in choice of strategy between the negotiating parties, without sacrificing
efficient interoperability. They mainly consider a setting in which credential holders prove certified
properties to a server, whereas we consider clients submitting unverified personal data, but their
techniques can be applied to both types of negotiations. More importantly, they recognize the need to
protect sensitive details of the parties’ preferences [SWY01, YWS03], and propose protocols achieving
this goal through a gradual release of requirements. Thereby, the disclosure of sensitive requirements
is postponed until a certain level of trust has been established. It is hard to quantify however how
much privacy this approach actually gives for general policies. In contrast, we employ cryptographic
techniques guaranteeing that the only information leaked about the other party’s preferences is the
policy that was agreed upon.

Cryptographic protocols. The problem of private policy negotiation is a specific instance of secure
two-party computation [Yao82, GMW87], which is the problem where two parties want to jointly
evaluate a function on private inputs, while leaking no other information about their inputs than what
is implied by the result. An efficient approach to secure two-party computation in the multi-party
setting is to model the function as a boolean circuit, and to use a threshold homomorphic encryption
scheme to evaluate it on encrypted inputs [AF90, FH96, CDN01, ST04]. (See Section 2 for more details
on this approach.) We build on these results by implementing policy negotiation as a boolean circuit
and evaluating it using the multiplication gates of [ST04]. The recently proposed double-homomorphic
encryption scheme of [BGN05] cannot be applied to our setting because it can only handle circuits
with a single level of multiplication gates. Though some attacks exist for the schemes underlying our
(and in fact, most) zero knowledge circuits implementations with a dishonest majority [Cle86], they
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can be resolved by applying a slightly weaker model than usuall and carefull implemenatation, as the
cheating party would clearly be exposed before any damage is done.

Private policy negotiation is also related to the problems of private matching and set intersec-
tion [FNP04], where two parties want to compute the intersection of their private datasets. Private
set intersection could be used for a basic form of policy negotiation by letting the client’s dataset
contain the attributes that the client is willing to reveal, and letting the server’s dataset contain the
attributes that he wants to see. A matching policy exists if the intersection is equal to the server’s
dataset (which has to be determined using an extra zero knowledge comparison technique). Our
protocol however supports more flexible preferences, allowing the client to express which attributes
cannot be revealed together, and allowing the server to declare multiple combinations as sufficient for
accessing the service. Moreover, to be useful in the model provided by existing privacy frameworks,
we need to be able to model obligations. A user may well be willing to reveal data he otherwise would
keep private if he is promised that it will be deleted within a week, or not forwarded to a third party.

Policy-based cryptography [BM05a, ARMLS04] is a way of enforcing need-to-know policies on the
distribution of data, by allowing to encrypt data such that only users with certain roles can decrypt
it. A trusted authority has the responsibility of issuing role certificates to the appropriate users. This
line of work is complementary to ours, as it considers policy enforcement rather than negotiation.
Moreover, their solution is not fully privacy preserving, as the ciphertexts leak information on the
policies of the parties involved.

1.3. Further Use Cases

While our protocol was originally designed to negotiate privacy preferences, the approach can be used
in various other settings where it is not sufficient to simply match attributes, but to allow users to
negotiate a match based on more complicated preferences.

Non-humiliating dating.Assume two people want to find out whether they share common interests
in order to decide if they should go on a date. To prevent humiliation, no interests are revealed
unless shared by the other person, if any at all. In its simplest form, every party has a constant set
of interests. A more complex setting is where each party has several sets of interests, corresponding
to the different offers the party is willing to make. For example, a person may simultaneously seek
quick affairs and more permanent relationships. Furthermore, he does not want a partner matching
the “permanent relationship policy” to know that he was also looking for a quick affair, even if (or
especially if) a match happens.

Business negotiations.The protocol may further be used for classical negotiation deals, i.e., for
buying goods or services. Classical private negotiation systems are one-dimensional, i.e., both parties
define an amount of money they are willing to spend or want to get, respectively, and the system
tells them if a deal can happen (and potentially, for how much). However, most negotiations today
have more facets. The seller may offer some discount if paid in cash, or if several items are bought,
and the buyer may pay more if home delivery is ensured, or the warranty is extended. Assuming the
number of options is not exceedingly high, our protocol delivers a practical way to privately negotiate
the proper conditions.

1.4. Outline of the Paper

This paper is organized as follows. In Section 2, we present a brief overview of a homomorphic version
of the El Gamal cryptosystem. Then we briefly discuss how threshold decryption and distributed key
generation work in this setting, and how a multiplication on encrypted inputs is performed securely.
Finally, we give efficient protocols for the secure evaluation of boolean AND, OR and NOT gates. In
Section 3, we formally define the policy matching problem. In Section 4, we model policy negotiation
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as a function evaluation problem by describing a circuit consisting of boolean AND, OR and NOT gates
implementing the negotiation process. We extend the circuit with obligations in Section 5, allowing a
user to specify under which conditions he’s willing to reveal each attribute. Again, a formal definition
and a functional description in terms of a boolean circuit is given. Finally, we explain in Section 6 how
the policy matching problem can be evaluated securely in a two-party setting, prove that the given
solution is secure, and analyze the efficiency of our solution.

2. Secure Two-Party Computation

We have chosen to use the tools of [ST04] based on threshold homomorphic cryptosystems for various
reasons. Firstly, threshold homomorphic cryptosystems allow for very efficient solutions of multi-party
computation problems that are resistant against active adversaries [JJ00, DN03, CDN01]. There
exist very efficient distributed key generation protocols for the discrete logarithm setting, making
it attractive for ad-hoc contacts. Moreover, discrete-logarithm based protocols can be implemented
using elliptic curves, resulting in smaller bandwidth requirements. Compared to the mix and match
technique of [JJ00] it offers the same round complexity of O(d), where d is the depth of the circuit
being evaluated, but it is much more efficient for multiplications. (More precisely, the techniques
developed in [ST04] are about ten times more efficient.)

2.1. Cryptographic Tools

Homomorphic encryption. Given an encryption function E, a public key p with corresponding
secret key s, and a message m, we denote by Ep(m) the encryption of m with the public key p.
An encryption function E is called additively homomorphic if for all messages m1 and m2, we have
Ep(m1 + m2) = Ep(m1)Ep(m2). Well-known examples of homomorphic cryptosystems are the El
Gamal cryptosystem [El 85] and the Paillier cryptosystem [Pai99]. In this paper, we mainly use the
El Gamal cryptosystem. It has the advantage that key generation can be done very efficiently, and is
therefore very well-suited for the P2P-setting. Most of the results we present, also hold however for
the Paillier cryptosystem.

We describe briefly the homomorphic version of the El Gamal cryptosystem. Let G = 〈g〉 denote
a finite cyclic (multiplicative) group of prime order q for which the Decision Diffie-Hellman (DDH)
problem is assumed to be infeasible: given gx, gy, gz ∈R G, it is infeasible to decide whether xy ≡ z
(mod q). This implies that the Computational Diffie-Hellman (CDH) problem1 is infeasible as well. In
turn, this implies that the Discrete Log (DL) problem, which is to compute s = logg h given h ∈R G,
is infeasible.

The public key of the El Gamal cryptosystem is an element h ∈ G and the encryption of a message
m ∈ Zq is given by the pair (a, b) = (gr, hrgm) where r ∈r Zq. The secret key s is given by s = logg h.

Given the private key s, decryption of the ciphertext (a, b) = (gr, gmhr) is performed by first
calculating b/as = gm, and then solving for m ∈ Zq. This is done by restricting ourselves to messages
m belonging to a sufficiently small domain M ⊆ Zq which allows for exhaustive testing. Here, we take
M = {0, 1}.

We define the multiplication of two ciphertexts (for the same public key) (a, b) and (a′, b′) by
(a, b)(a′, b′) = (aa′, bb′). It readily follows that this encryption scheme is additively homomorphic for
this multiplication. Note that a message m has many encryptions under the same public key because
of the randomness r involved. By multiplying Ep(m) with Ep(0) one obtains a new encryption of m
under the same public key. Under the DDH assumption, this cryptosystem is semantically secure.

For ease of notation, we will use [[m]] to denote an encryption of the message m under some under-
stood public key. In this notation we have [[x]][[y]] = [[x + y]] and [[x]]y = [[xy]].

1 The Computational Diffie-Hellman problem is to compute gxy given gx, gy ∈R G.
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Threshold decryption. In an (n, t) threshold cryptosystem [DF90], the private key is distributed
over n parties such that only coalitions of size at least t parties can decrypt the message hidden inside
a ciphertext. In this paper we use a (2, 2) threshold cryptosystem where encryptions are computed
with a common public key h but decryption is performed by running a protocol between the two
involved parties. Every party holds a share si ∈ Zq of the private key s = s1 + s2 = logg h, where
the corresponding value hi = gsi is public. As long as both parties take part, decryption will succeed,
whereas only one party is not able to decrypt successfully. Assuming that the parties have already
obtained their shares of the secret key (through a distributed key generation protocol, explained
below), decryption is performed as follows.For decryption of the ciphertext (a, b), the players P1 and
P2 produce a decryption share di = asi (i = 1, 2) together with a proof that loga di = logg hi. Assuming
that both players produce correct decryption shares, the message is recovered from solving gm = b/as

(where as is obtained as d1d2) for m. Finally, it is checked whether m ∈ {0, 1}. If this does not hold
decryption fails. In case both parties need to obtain the decrypted value, the protocol has to be run
in a fair way. A protocol for this is given in [ST04]. In case only one of the parties sends his share to
the other party, a threshold decryption protocol with private output is obtained.

Distributed key generation. In order to set up the key generation in a P2P situation, the users
have to run a distributed key generation (DKG) protocol. We describe very briefly a practical pro-
tocol [GJKR99] here. In the first step, both parties broadcast a Pedersen commitment ci = gsih′ri ,
with si, ri ∈R Zq along with a proof of knowledge for si, ri. In the second step, both parties broadcast
ri along with a proof of knowledge of logg hi, where hi = ci/h

′ri . The joint public key is h = h1h2,
with corresponding private key s = s1 + s2. In many practical cases, a more lightweight one-round
protocol2 can be used. Then, both players broadcast hi = gsi and a proof of knowledge of si.

2.2. Secure Two-Party Computation from Homomorphic Encryption

In order to evaluate functions securely withstanding active attacks, zero-knowledge proofs are needed.
We mention the most important proofs here for the discrete logarithm setting. One has Schnorr’s proto-
col [Sch90] for proving knowledge of x given the public value gx, and the extension of Okamoto [Oka92]
proving knowledge of x, y given the common value gxhy. Furthermore there is the Chaum-Pedersen [CP92]
protocol for proving knowledge of x given the common value (a, b) = (gx, hx) (note that this gives a pro-
tocol for proving that a ciphertext (a, b) is an encryption of zero). Applying OR-composition [CDS92],
one can distill from above mentioned proofs a protocol for proving that a ciphertext (a, b) is an en-
cryption of a bit. We note that those proofs can be simulated and hence do not leak any information
about the input to the protocol except what is revealed by the protocol itself. The most important
ones are Schnorr’s protocol [Sch90], Okamoto’s [Oka92] and Chaum-Pedersen [CP92].

In order to be able to securely evaluate any circuit using an additive homomorphic encryption
scheme, a protocol for secure multiplication is needed. We briefly remind the private multiplier gate
and the conditional gate developed in [ST04]. Those protocols are simulatable even in the malicious
case, and guarantee to both users that the computations have been performed correctly.

First consider the situation where the encryptions [[x]] = (a, b) = (gr, gxhr) and [[y]] = (c, d) are given
with player P1 knowing x. Player P1 computes on its own a randomized encryption [[xy]] = (e, f) =
(gs, hs)[[y]]x, with s ∈R Zq, using the homomorphic properties. Finally player P1 broadcasts [[xy]]
along with a proof showing that this is the correct output. which means that she proves knowledge of
witnesses r, s, x ∈ Zq satisfying a = gr, b = gxhr, e = gsc, f = hsdx.

Next, we consider a multiplication gate taking only encrypted inputs and for which the multiplier x
is from a dichotomous (two-valued) domain, whereas the multiplicand y is unrestricted. It was called

2 Although the trivial protocol allows one of the parties to influence the distribution of the public key h slightly, this
need not be a problem for the application in which the key is used; see [GJKR03] for more details.

7



the conditional gate in [ST04].We present an explicit implementation for the two-party case. For sake
of simplicity the formulation is done for the dichotomous domain {−1, 1}.3

Let [[x]], [[y]] denote encryptions, with x ∈ {−1, 1} ⊆ Zq and y ∈ Zq. The following protocol enables
players P1 and P2, to compute an encryption [[xy]] securely.

1. Player P1 broadcasts an encryption [[s1]], with s1 ∈R {−1, 1}. Then P1 applies the private-
multiplier multiplication protocol to multiplier s1 and multiplicands [[x]] and [[y]], yielding random
encryptions [[s1x]] and [[s1y]]. Analogously, player P2 broadcasts an encryption [[s2]], with s2 ∈R

{−1, 1}. Then P2 applies the private-multiplier multiplication protocol to multiplier s2 and
multiplicands [[s1x]] and [[s1y]], yielding random encryptions [[s1s2x]] and [[s1s2y]].

2. The players jointly decrypt [[s1s2x]] to obtain s1s2x. If decryption fails because s1s2x 6∈ {−1, 1},
the protocol is aborted.

3. Given s1s2x and [[s1s2y]], an encryption [[(s1)
2(s2)

2(xy)]] = [[xy]] is computed publicly.

2.3. Secure Evaluation of some Basic Gates

In Section 3 we turn the private policy negotiation problem into a problem of the secure evaluation
of a function that can be described as a circuit consisting of basic gates, in casu NOT, OR and AND
gates. For bits x, y ∈ {0, 1}, we use the shorthand notation ¬x to denote the negation of x, we use x∧y
to denote the logical conjunction (AND) of x and y, and we use x∨ y to denote the logical disjunction
(OR) of x and y. We present protocols for the secure evaluation of those gates within the model of
secure two-party computation; i.e. we consider two parties who evaluate these gates without revealing
anything about their input (except the information that leaks from the output of the function).

We distinguish between protocols having only encrypted inputs and those having an encrypted and
an unencrypted input. An unencrypted input refers to a private input of a user. The execution of the
protocol should not reveal any information on this input. Encrypted inputs are inputs containing a
message unknown to both players. Often they are the result from a previous (intermediate) computa-
tion whose result should remain unknown to both users. Clearly, the execution of the protocol should
not reveal anything more on the message hidden by the encryption than what is revealed by the result
of the protocol.

AND with Encrypted Inputs. Given two encrypted bits [[x]] and [[y]], the players run a conditional
gate on those two inputs to compute [[x ∧ y]].

AND Gate with one Encrypted and one Unencrypted Input. Let x denote the private input
and [[y]] the encrypted input which is available to both. The players run the private multiplier
gate on inputs x and [[y]].

OR Gate with Encrypted Inputs. Given two encrypted bits [[x]] and [[y]], [[x∨ y]] is securely com-
puted by running a conditional gate on the inputs [[x]] and [[y]]. Then, using the homomorphic
properties of the cryptosystem, they compute [[x ∨ y]] as [[x + y − xy]].

OR with an Encrypted and an Unencrypted Input. Given unencrypted input x and encrypted
input [[y]], the players run the private multiplier gate, yielding [[xy]]. Then, the players compute
[[x ∨ y]] = [[x + y − xy]].

NOT Gate on Encrypted Inputs. Computing [[¬x]] given [[x]] is done by computing [[1 − x]] pub-
licly.

3 Domain {0, 1} or any other domain {a, b}, a 6= b, can be used instead, as these domains can be transformed into
each other by linear transformations: x 7→ a′ + (b′ − a′)(x− a)/(b− a) maps {a, b} to {a′, b′}. These transformations can
be applied directly to homomorphic encryptions, transforming [[x]] with x ∈ {a, b} into [[x′]] with x′ ∈ {a′, b′}.
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3. Private Policy Matching: Definition and Approaches

3.1. Definitions

By the preferences of a user we mean a strategy defining which attributes (e.g. credit card number,
address, ...) he is willing to reveal in order to gain access to certain service. The preferences of a server
define the attributes he requires from a user before granting access to the service. Policy negotiation
refers to the process of finding out whether a match exists between the attributes that the user wants
to reveal and the set of attributes that the server requires. We say that a combination of attributes is
a matching policy if it is acceptable to both the client and the server. We define the problem of policy
matching more formally as follows.

Definition 3.1 Let A be a set of attributes, and let S be a totally ordered set of scores with least
element 0. Preferences over the set of attributes A are described by functions f, g : 2A → S that
assign to each combination of attributes A ⊆ A a score s ∈ S, indicating the client’s willingness to
reveal the combination of attributes A (in the case of client preferences f), or indicating the server’s
inclination to accept that combination of attributes as sufficient to access the service (in the case
of server preferences g). A matching function M : 2A × S × S → S assigns a matching score to a
combination A ⊆ A based on A, the client’s willingness f(A) and the server’s acceptance g(A). A
combination A is said to be a matching policy with respect to client preferences f , server preferences
g and matching function M if M(A, f(A), g(A)) > 0. The best matching policy is the combination
A ⊆ A for which M(A, f(A), g(A)) is maximal.

We introduced the set S to allow the expression of fine-grained preferences by assigning weights
to sets of attributes. Throughout this paper however, we limit ourselves to the case S = {0, 1} and
M(A, f(A), g(A)) = 1 iff f(A) = g(A) = 1, which corresponds to a client being either willing or
unwilling to reveal a combination of attributes, a server either accepting a combination of attributes
or not, and a match occurring whenever both parties accept the policy.

By private policy negotiation we mean a protocol between the client and the server during which they
learn nothing about each other’s preferences except whether a matching policy exists, and possibly
what that matching policy is. In our model, we consider an active but static adversary who can corrupt
one of both players and hence get access to all data of the corrupted player. External measures should
be taken to prevent the client from extracting the server’s preferences through repeated negotiations
with different input preferences, e.g. by limiting the number of negotiations per client within a certain
time interval or requiring human interaction.

3.2. Straightforward Approach

Let A = {a0, . . . , an−1} be the set of the client’s attributes (e.g. a0 = “credit card number”, a1 = “birth
date”, . . . ). If x is a bit string of length n, then we refer to the individual bits of x as x0 . . . xn−1. To
each x ∈ {0, 1}n, we associate a set of attributes A(x) = {ai ∈ A : xi = 1, 0 ≤ i ≤ n− 1}. The client’s
preferences can be modeled as a boolean function f : {0, 1}n → {0, 1}, where f(x) = 1 if the client is
willing to reveal the combination of attributes A(x), and is 0 if he’d rather not reveal this combination.
Likewise, the server’s preferences can be modeled as a boolean function g : {0, 1}n → {0, 1}. A
matching policy is an assignment x ∈ {0, 1}n such that f(x) = g(x) = 1.

The functions f(x) and g(x) are most naturally represented through their truth tables. Deciding
whether a matching policy exists comes down to finding a row with a 1 in the output column of both
truth tables. The most straightforward way to implement this approach as a boolean circuit is to let
the client’s input be a bit string f̂ ∈ {0, 1}2

n

that is the output column of the truth table of f(x),
and to let the server’s input be ĝ ∈ {0, 1}2

n

being the output column of the truth table of g(x). The
circuit computes an index i ∈ Z2n such that f̂i = ĝi = 1. The size of this circuit (in number of inputs
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and number of gates), however, is O(2n), making it unsuitable for evaluation through secure two-party
protocols.

3.3. Generating Subsets

A more compact yet quite natural description of the client’s and server’s policies can be obtained by
observing that in most real-world cases, f is a monotonically decreasing boolean function, meaning
that if f(A) = 1 and B ⊆ A, then also f(B) = 1. Indeed, if the client is willing to show the combination
of attributes A, then it is natural to assume that he is willing to show any subset of these attributes
as well. Likewise, it is easy to see that usually g is monotonically increasing, meaning that if g(A) = 1
and B ⊇ A, then g(B) = 1. Indeed, if showing attributes A is sufficient to access the service, then so
should be any combination B ⊇ A.

Definition 3.2 Let h : 2A → {0, 1} be a monotonically increasing boolean function. We say that
H = {H1, . . . ,Ha} ⊆ 2A is a set of generating subsets for h iff for all A ⊆ A

h(A) = 1 ⇔ ∃ i ∈ {1, . . . , a} : Hi ⊆ A .

Note that since f is a monotonically decreasing function, ¬f is a monotonically increasing function
that is described through its set of generating subsets F = {F1, . . . , Fa}. Essentially, the sets F1, . . . , Fa

are the minimal combinations of attributes that the client does not want to reveal together. Likewise,
the function g is described through its set of generating subsets G = {G1, . . . , Gb}, where the sets
G1, . . . , Gb are the minimal combinations of attributes that the server wants to see before delivering
the service.

These generating subsets are not only a very compact representation of the client’s and server’s
preferences, they are at the also a natural way of thinking about such preferences. The client for
example may be reluctant to simultaneously show his credit card number and his mother’s maiden
name (the latter is sometimes used as a backup secret to reactivate lost cards), independent of other
attributes he has to reveal in addition to that. Analogously, the server knows the minimal information
that he needs from users (e.g. name and either email address or phone number), but he won’t mind
getting extra attributes

Using the notation of generating subsets, finding a match is equivalent to finding a set of attributes
A ⊆ A such that

• ∀ Fi ∈ F : Fi 6⊆ A, and

• ∃ Gj ∈ G : Gj ⊆ A .

Without loss of generality, we can assume that the matching policy is one of the server’s generating
subsets, if a match exists. (This is the match with the smallest number of shown attributes.) Therefore,
we can write the condition for the matching policy A more compactly as the set of attributes Gj ∈
G such that ∀ Fi ∈ F : Fi 6⊆ Gj .

3.4. Equivalence

Since truth tables and generating subsets are just different ways of describing the same preferences,
there must be a relation between the two approaches. Indeed, we have that f(x) = 0 if and only if
there exists a subset Fi ∈ F such that Fi ⊆ A(x), and that g(x) = 1 if and only if there exists a subset
Gi ∈ G such that Gi ⊆ A(x). Casting this into a boolean formula gives

¬f(x) =
∨

Fi∈F





∧

aj∈Fi

xj



 g(x) =
∨

Gi∈S





∧

aj∈Gi

xj



 , (1)
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showing that the generating subsets are actually the terms of ¬f(x) and g(x) when written in disjunc-
tive normal form (DNF).

4. A Boolean Circuit for Policy Matching

…

F1

G1

…

Fa

G1

…

G1

e0=0

M

…

Layer 1 Layer 2

OR

bitwise AND

bitwise NOT

single wire

bus

split bus into single wires

Legend:

AND

repeat single wire on all wires of bus

NOT

bitwise OR

e1

f1

g1

F1

Gb

…

Fa

Gb

…

Gb

e

gb

eb-1

…fa

f1

fa

c1

cb

Figure 1: An efficient circuit for policy negotiation The client’s inputs are generating subsets F1, . . . , Fa,
encoded as n-bit strings, and corresponding real-or-dummy bits f1, . . . , fa. The server’s inputs are
generating subsets G1, . . . , Gb, strings, with corresponding real-or-dummy bits g1, . . . , gb. The output
e indicates whether a matching policy exists (e = 1) or not (e = 0). The output M is an encoding of
a matching combination of attributes, or 0n if no such policy exists.

A boolean circuit implementing the generating subsets approach is given in Figure 1. The client’s
input consists of the generating subsets F1, . . . , Fa encoded as n-bit strings, where the j-th bit of Fi is 1
iff attribute aj ∈ Fi. The server’s input consists of the subsets G1, . . . , Gb in the same encoding. Since
the values of a and b leak information about the complexity of the client’s and server’s preferences,
the circuit needs to be designed for some fixed maximum values of a and b. Note that this leads to
a worst-case scenario from the point of view of efficiency, but this is unavoidable as otherwise the
run time would leak information about the preferences. The client and server assign arbitrary values
to unused Fi and Gj entries, but distinguish “real” subsets from “dummy” subsets by setting the
additional input bits fi and gj to 1 or 0, respectively. The output of the circuit is the encoding of a
matching policy M , and a bit e indicating whether a matching policy exists (e = 1) or not (e = 0).
We will see that when no matching policy is found, M takes the value 0 . . . 0.

Gates with multiple fan-in in Figure 1 can be implemented as a cascade of binary gates (e.g. x0 ∨
x1 ∨ x2 ∨ x3 = ((x0 ∨ x1) ∨ x2) ∨ x3, or as a balanced tree of binary gates (e.g. x0 ∨ x1 ∨ x2 ∨ x3 =
(x0 ∨ x1) ∨ (x2 ∨ x3)). Both options are equivalent in the total number of gates, but the latter option
gives a better efficiency in terms of communication rounds, as we will see later. The thick lines in
Figure 1 represent buses, which are essentially collections of parallel wires to carry words, rather than
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individual bits. Thick gates represent bitwise operations on words, e.g. the bitwise AND of n-bit words
x, y ∈ {0, 1}n is the n-bit word z = (x0 ∧ y0, . . . , xn−1 ∧ yn−1).

The circuit consists of two layers. The first layer checks, for all j = 1, . . . , b, whether Gj is a suitable
candidate for a matching policy, meaning that Gj does not conflict with any of the client’s sets Fi.
The wire labeled cj in Figure 1 carries a one if Gj is a candidate policy, and a zero if not.

The circuit first computes, for all i = 1, . . . , a and j = 1, . . . , b, whether the client’s set Fi is
“compatible” with the server’s set Gj , meaning that Fi 6⊆ Gj . This is equivalent to checking that
there exists at least one attribute a ∈ A such that a ∈ Fi but a 6∈ Gj . The output word of the
bitwise AND gates in Layer 1 contains a one-bit for each such attribute. OR-ing the n bits of this
word together gives 1 iff at least one such attribute exists. By including ¬fi in the OR, the output of
the OR-gate is forced to 1 for dummy input sets Fi, representing the fact that policy Gj should never
be rejected because of a conflict with a dummy set. The rightmost AND gates in Layer 1 decide, for
all j = 1, . . . , b, whether Gj is a candidate matching policy, meaning that it was “compatible” with
all (non-dummy) client reluctancy sets. By including gj in the AND gate, cj is forced to 0 if gj = 0,
representing the fact that a dummy server set Gj can never be a suitable candidate.

The second layer finds the candidate policy with the lowest index and outputs it as the matching
policy. To select the match with the smallest index, the circuit uses intermediate variables ej that
are 1 iff a matching policy exists among G1, . . . , Gj . The next value for ej is computed as ¬ej−1 ∧ cj ,
and the output bit e = eb is one iff a matching policy was found. AND-ing cj with ¬ej−1 ensures
that the only non-zero bit coming out of any of the leftmost AND gates in Layer 2 is on the wire
corresponding to the first match. The final gates of the circuit encode a matching policy onto the
output bus M . Assume a match was found, and let j′ be the index of the first match. Then the
output of the j′-th bitwise AND gate in Layer 2 is Gj′ ∧ 1n = Gj′ , while for all other AND-gates it is
Gj ∧0n = 0n. The final bitwise OR-gate sets the output M to Gj′ ∨0n∨ . . .∨0n = Gj′ . If no matching
policy was found, then M is set to 0n, leaking no information about the server’s preferences except
the fact that no match exists with the given client preferences.

5. Policy Matching with Obligations

In this section, we extend the circuit to allow the client to express demands concerning certain at-
tributes, such as that the data is deleted after a certain time, that it is not forwarded to third parties,
or even to receive a discount in exchange for a certain attribute. The server expresses the promises he’s
willing to make for each attribute. A matching policy is then defined as a combination of attributes
such that (1) they are deemed sufficient by the server to access the service, (2) the client is willing to
reveal them, and (3) the server is willing to comply with the client’s demands related to the revealed
attributes. We extend Definition 3.1 with obligations as follows.

Definition 5.1 Let A be a set of attributes, let S be a totally ordered set of scores with least element 0,
let f, g be functions describing the client’s and server’s preferences, and let M be a matching function as
in Definition 3.1. Let O be a set of obligations. The client’s demand function d : A → 2O associates to
each attribute a set of obligations that the client demands from the server when revealing that attribute.
The server’s willingness function w : A → 2O maps an attribute to the set of obligations that the
server is willing to respect for that attribute. We say that A ⊆ A is a match with respect to preferences
f, g, matching function M , demand function d and willingness function w if M(A, f(A), g(A)) > 0 and
∀ a ∈ A : d(a) ⊆ w(a). The best match is the subset A ⊆ A for which M(A, f(A), g(A)) is maximal.

Again, we will only consider here the special case of Definition 5.1 where S = {0, 1}, where f and g
are monotonically decreasing, respectively increasing, boolean functions, and where the result of the
matching function M(A, f(A), g(A)) = 1 iff f(A) = g(A) = 1. Let O = {o0, . . . , om−1} be the set of
promises that the client can demand for each attribute (e.g. o0 = “Delete after session”, o2 = “Delete
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Gj

D1

Dn

W1

Wn

…

cj

…

cj’

M

D1

Dn

M

… …

O1

On

Figure 2: Extensions to the circuit of Figure 1 to support promises. The circuit on the left computes
whether the server is willing (as defined by additional server inputs W1, . . . ,Wn) to meet the client’s
demands (as defined by additional client inputs D1, . . . ,Dn) for all attributes in a candidate policy
Gj . The circuit on the right encodes the agreed-upon promises as part of the output.

after one year”, o3 = “Do not forward to third parties”,. . . ). The modifications to the circuit of
Figure 1 are depicted in Figure 2. The client’s demand function and the server’s willingness function
are described by additional input sets Di = d(ai) and Wi = w(ai) for i = 0 . . . m − 1, respectively,
encoded as m-bit strings. Apart from the matching policy M and a bit e indicating whether a match
was found, the circuit now also outputs the obligations O0, . . . , On−1 ⊆ O that the server has to adhere
to for attributes a0, . . . , an−1.

The left circuit in Figure 2 is inserted b times between Layers 1 and 2 in Figure 1 on each wire cj ,
j = 1, . . . , b, replacing cj with a bit c′j before passing it to Layer 2. For each candidate policy Gj , this
subcircuit computes a bit c′j indicating whether the server is also willing to make all promises that
the client requires for attributes in Gj . The first bitwise AND gate simply encodes Gj on the bus if
Gj is a candidate (cj = 1), or encodes a string of zeroes if not (cj = 0). This encoding is split up in n
separate wires representing whether attribute ai ∈ Gj or not, for i = 0 . . . n− 1. For each attribute ai,
the second column of bitwise AND gates outputs an m-bit word with a 1 on each wire representing an
obligation o ∈ O that the client demands (o ∈ Di) but that the server is not willing to make (o 6∈ Wi).
If any such promise exists in any of the attributes in Gj , then policy Gj is not a match. This is exactly
what is computed by the OR gate. The final NOT gate inverts this result so that c′j = 1 if and only
if Gj is a candidate match for which additionally the promises work out.

The right circuit in Figure 2 is to be appended to the right of the circuit in Figure 1. If attribute
ai ∈ M , then the bitwise AND gate encodes the client’s demands Di onto the output promises Oi, or
it encodes the all-zeroes string if ai 6∈ M .

6. The Private Policy Matching Protocol

6.1. Security

Security. In Section 3, we transformed the policy negotiation problem into a function evaluation
problem to which each of the two parties provides its own private inputs (policies). Let us denote
the corresponding function by C. First, the function C is described as a circuit consisting of AND,
OR and NOT gates in Section 3. It was shown that those gates can be evaluated if addition and
multiplication can be performed on encrypted inputs. Addition on encrypted inputs follows immedi-
ately from the homomorphic property of the used cryptosystem and the multiplication is done with
the conditional gate of [ST04]. The function C is then privately evaluated by the following protocol
FuncC(F1, . . . , Fa;G1, . . . , Ga).

1. Both players encrypt their inputs; i.e. they encrypt (bit by bit) the strings describing their
generating subsets. They broadcast zero-knowledge proofs that they know the content of their
encryptions and that the values they encrypted are bits.

2. They carry out all the gates of the circuit that describes the function f by using the secure
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evaluation of the gates described in section 2.3. Gates that can be run in parallel will be
securely evaluated in parallel, the others will be evaluated sequentially.

3. Finally, the output of the protocol is decrypted with a threshold decryption protocol.

Note that if the output should only be revealed to one of the players instead to both, then a threshold
decryption with private outputs has to be used [ST04]. Finally, we mention that fairness can be
achieved easily by using the fair decryption protocol developed in [ST04]. We have the following
theorem.

Theorem 6.1 On input of the generating subsets F1, . . . , Fa and G1, . . . , Ga of the client and the
server respectively, the protocol FuncC evaluates the private policy negotiation without leaking any
additional information about F1, . . . , Fa and G1, . . . , Ga.

Proof: Completeness of the FuncC protocol follows from the analysis in section 3 and of the con-
struction of the gates in section 2.3. The fact that the FuncC protocol can be simulated follows from
the following observation. The gates that are evaluated during the FuncC protocol consist on their
turn of sequences of additions and multiplications. Hence it follows that the structure of the FuncC

protocol follows exactly the structure of the function evaluation protocols in [CDN01, ST04]. This
implies that the FuncC protocol can be simulated and hence leaks no additional information on its
inputs F1, . . . , Fa and G1, . . . , Ga.

Using the analysis in Section 5, which describes the extended policy matching problem with obliga-
tions as a function C̃, and the protocol FuncC(F1, . . . , Fa;G1, . . . , Ga) given above for secure evaluation
of the function C, it is straightforward to write down a protocol for secure evaluation of the function
C̃ i.e. policy negotiation with obligations. It readily follows from the description in Section 5 that
the function C̃ can also be described by a circuit consisting of AND, OR and NOT gates. Hence, the
proof that the associated protocol leaks no additional information on the player’s inputs, is analogous
to the proof of Theorem 6.1.

6.2. Efficiency

In order to assess the practical feasibility of our protocol, we estimated the overhead incurred by
evaluating the circuits given in Figures 1 and 2 using the techniques laid out in Section 2. (A constant
factor on the number of gates can probably be saved by applying a design automation tool such as
Xilinx.) A number of representative values are given in Table 1. For both the basic circuit and the
extended circuit with obligations, we computed the total amount of data sent over the network, the
number of communication rounds, and the number of exponentiations to be performed by each of
the participants. The actual values were obtained by observing that the evaluation of an AND/OR
gate on encrypted inputs involves 11 exponentiations from each participant and 26 group elements
to be communicated over the network in 2 rounds; that the evaluation of an AND/OR gate with
one known input involves 4 exponentiations by one of the participants and 10 group elements to be
communicated in a single round; and that the evaluation of a NOT gate comes practically for free
(using the homomorphic properties of the encryption scheme). We were able to save on the number
of rounds by evaluating independent gates in parallel, and by implementing bitwise gates on n-bit
vectors using binary gates organized in a tree of depth ⌈log2 n⌉, rather than in a cascade.

Asymptotically speaking, the basic circuit without obligations requires O(abn) exponentiations to be
computed and O(abn) group elements to be communicated in O(b+log(bn)) rounds. The circuit with
obligations takes O((a+m)bn) exponentiations and O((a+m)bn) group elements in O(b+log(abmn))
rounds.
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without obligations with obligations
n a, b m bandwidth rounds exponentiations bandwidth rounds exponentiations

10 5 10 235 KB 16 4.11 · 103 1.15 MB 36 2.15 · 104

50 25 25 24.0 MB 24 4.29 · 105 88.3 MB 52 1.62 · 106

200 50 100 373 MB 30 6.66 · 106 1.97 GB 66 3.76 · 107

Table 1: Efficiency estimates of our protocol for various parameter values when using the two-party
computation protocol of [ST04] over 170-bit elliptic curves. We give the amount network traffic
(bandwidth), the number of communication rounds and the number of exponentiations to be performed
by each of the players for realistic values of the number of attributes n, the maximal number of client
and server preferences a and b, and the maximal number of obligations per attribute m.

From Table 1, one can see that our protocol is practically feasible only for relatively simple pref-
erences and/or resourceful environments. For larger parameter values, the overhead may become
prohibitive. This is due to both the use of generic cryptographic primitives and the severeness of our
privacy requirements. We think that our implementation, however, can still serve as a benchmark for
protocols that use specialized techniques or relaxed privacy requirements.

7. Conclusion

We consider this paper as a first step towards privacy preserving negotiation protocols, whereas the
main goal is to cleanly define the problem and demonstrate its feasibility. Consequently, this work
raises a number of new questions that need to be addressed for the system to become practical.

One main issue is that our definitions of security are borrowed from the cryptographic community,
and therefore are rather strict. For many applications, this level of security is too much, as it disallows
a number of useful properties, such as open policies (i.e., allowing the user to introduce new attributes
that are not in the standard), hierarchical policies (i.e., allowing the user to choose wether he wants
a simple policy over general attributes, or a complex policy on specific attributes), and mixing data
into the policy (e.g., express a statement like “If the user’s age is smaller than 18, then the parents’
address is required”).

To resolve this question, a more realistic privacy metric is required. Defining such a metric is a
challenging issue: on the one hand, it has to define real world privacy issues, on the other hand it
should be sufficiently formal to allow for provably secure protocols. While there is some work on
privacy metrics in the literature [SK03, DSCP02], the authors are not aware of any such metric that
satisfies these conditions.

The second main issue is that our protocols use rather generic two-party computation. While the
protocols are efficient enough to negotiate reasonably sized policies on Internet connected computers,
large policies or devices with a small bandwidth (such as a cellular phone) will pose a problem. We
expect that the cost of the protocols can be significantly decreased by using dedicated protocols instead
of generic techniques.
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