

A Case study in Application Integration

Stijn Van den Enden

Business Integration Company
PB 494

2000 Antwerpen 1, Belgium
stijn@bico.be

Erik Van Hoeymissen
Gregory Neven*

Pierre Verbaeten

DistriNet Research Group
Dept. Computer Science, KU Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

{ erikv, gregory, pv}@cs.kuleuven.ac.be

Abstract

In this position paper, we present an architecture that we used in a case study on Enterprise
Application Integration (EAI). The architecture encapsulates all business logic in a workflow, and
uses intelligent adapters to provide for the “glue” that links the external applications to the
workflow. These adapters are able to transform XML message formats into other data formats or
into objects. They are intelligent by which we mean that they are able to take different actions
based on the content of the message. To communicate with the applications, the adapters can
make use of the services offered by a message broker.

1 Introduction

The case study elaborated in this paper is situated in the context of an enterprise integration
project after the merger of two large companies. The overall goal of the project is to enable the
sharing of data and business processes among any connected applications and data sources in the
“new” enterprise, without having to make sweeping changes to the existing applications or data
structures. Moreover, the integration allows the development of new services that are supported
by the existing portfolio of backoffice applications with a minimal effort.

2 Problem Statement

The overall problem is presented in figure 1, where we consider the development of a new
application that makes use of existing legacy applications of both organizations. We want to
provide an architecture that makes it possible to implement the business logic of such an
application as a workflow that delegates specific subtasks to the backoffice applications and
allows interaction with the users via the frontoffice applications.

In this case study we consider a frontoffice application developed in Sun’s 4GL [1] that
makes it possible for an employee to log in with a specific role, receives tasks from the workflow
system and displays information in a user interface. The backoffice legacy application we
consider here is the customer management system implemented in LINC [2]. This system is
responsible for the storage and processing of all customer related data of the insurance company.

* Research Assistant of the Fund for Scientific Research – Flanders, Belgium (F.W.O.)

BackOffice

FrontOffice

Adapter

Legacy
Application

Adapter

Legacy
Application

Adapter

Legacy
Application

...

Adapter Adapter

GUI GUI

Process

Figure 1 The overal integration architecture

3 Solution

In this section we present the architecture that we used to solve the EAI problem. The
architecture encapsulates all business logic in a workflow engine, and uses intelligent adapters to
couple back- and frontoffice applications to the workflow. The adapters are able to transform
XML message formats into other data formats or into objects and they are able to take different
actions based on the content of the message. To communicate with the applications, the adapters
can make use of the services offered by a message broker.

3.1 Workflow

The workflow describes the flow of data between applications, and encapsulates the overall
business process. The flow focuses solely on the business process by making abstraction from the
procedure to interact with each of the backoffice systems. All data flowing between the different
activities is formatted in XML. Bo th the frontoffice and the backoffice understand XML, and
interact with the workflow system by exchanging XML messages. The reasons to choose XML as
the language for the description of the data flowing through the workflow are:

� interaction with various types of clients including web clients using HTML, and mobile
clients using WML;

� standardized transformation capabilities with XSL/XSLT;
� easy integration with legacy applications using of the shelf adapters, and with

forthcoming business to business services such as electronic marketplaces and
Application Service Providers;

� built in validation capabilities using DTD, XML Schema, etc.;
� XML provides a technology independent representation of the data. XML data can easily

be mapped to program structures for processing in any programming language.
The workflow process engine of choice is Sun’s Forte Conductor (a part of Forte Fusion [3]).

Forte Conductor is a workflow product that essentially consists of three components: a workflow
engine, a history and analysis component and a graphical modeling tool. The heart of the Forte
Conductor workflow product is formed by a workflow engine that manages the processes. The

engine decides what step a process is in, who should be notified next, who needs to do work next,
which application needs to be called at a certain point in time, etc. Client applications register on
events with the engine to tell them when there is work for them to do. Each client has a specific
role that determines for which activities it receives events. The history and analysis component
keeps track of the current state of all processes in order to determine what happens next, to be
able to recover in case of a failure and for auditing reasons. Conductor also provides a graphical
tool that allows developers to draw the process description as a set of activities connected by lines
that represent the flow of control. Control flow design is supported by features like recursion,
routing rules, triggers and timers.

In our architecture we use the conductor workflow engine to interact with the backoffice and
frontoffice through adapters. The details about these adapters are explained in the next section.

3.3 Adapters

By using intelligent adapters (i-adapters), all details about the interaction of the workflow
system with other applications are kept out of the workflow layer. Each separate system that
interacts with the workflow engine req uires a specific adapter. An adapter logs in on the
conductor engine with a dedicated role. The role links the adapter to the process engine and
makes sure that the adapter only receives tasks the underlying application can handle. The
adapters can be divided in two categories: backoffice and frontoffice adapters.

3.3.1 Backoffice adapter

As shown in figure 2, a backoffice adapter consist of a robotic client, an integration
workflow, MQSeries Integrator and the MQSeries messaging service [4].

A backoffice adapter is coupled to the workflow system through a robotic client (RBC). The
coupling is based on a contract that defines a complete XML interface for the services offered by
the backoffice application. The contract defines the input parameters, the output parameters and
possible exceptions. It fulfills a central role in the integration architecture. Without an agreement
on the structure and content of the XML messages an unambiguous communication would not be
possible.

The robotic client automatically receives tasks from the workflow engine whenever they
become available. All information needed to call the specific service in the backoffice is supplied
by the workflow engine as an XML message. The robotic client will validate the ingoing and
outgoing messages against the contract, so errors are discovered early in the processing. If the
message is valid, the robotic client will start a specific activity like for example retrieving
customer information from the backoffice application.

The operation that the robotic client wants to execute on the backoffice requires itself a
sequence of steps that are modeled as a workflow (the integration workflow). This workflow
typically deals with issues like error handling, but it could also be used to extend the functionality
of the backoffice application. As before, the integration workflow will delegate operations to
robotic clients, but in this case the operations are such that they can be executed directly on the
backoffice (i.e. they don’t have to be modeled as a workflow). The robotic clients make the XML
message ready for processing by MQSeries Integrator (MQSI).

The backoffice adapter sends messages to the customer management system through
IBM’s message queuing product MQSeries, which provides exactly-once asynchronous message
delivery. While MQSeries only supports point-to-point communication, IBM’s MQSI extends
this functionality by providing a message brokering service with features like intelligent routing,
publish/subscribe functions and mapping between different message formats.

In this particular case study, MQSI is used to convert the hierarchically structured XML
messages into flatfile messages understandable by the LINC system. Unfortunately, MQSI does

not support XSLT to perform this mapping, so ESQL has to be used. After this mapping, MQSI
routes the message to the right queue for the LINC system.

The communication in the opposite direction is completely analogous: the LINC system puts
a flatfile message on the MQSeries queue, MQSI translates it into an XML message and routes it
to a robotic client that feeds it to the integration workflow.

To make things more concrete, we consider as an example the integration workflow that
models an update operation on the customer management system. We will not go into t he
details, but because of specific linkage of the system to MQSeries, MQSeries cannot be
used as a guaranteed message delivery channel. To solve this problem, we model the update
operation as the following sequence of activities.

<xml>
 <data/>
</xml>

<xml>
 <data/>
</xml>

<xml>
 <data/>
</xml>

Robotic Client

RBC RBC RBC RBC

Business Process

Integration Flow

Adapter

MQSeries Integrator

MQSeries

BackOffice System

Figure 2 Overview of the backoffice adapter

1. A message is sent to the customer management system through MQSI and MQSeries. A

unique ID is sent with the operation request. This ID is logged into a database at the side
of the backoffice. The database stores the ID and the return message of each request, in
other words the database contains a log of all operations.

2. When the return of the operation is successfully received, the message can be forwarded
to the adapter. However, when the adapter doesn’t receive the return message on time,
the workflow process should check whether the operation has been received by the
backoffice and has been completed successfully. This can be accomplished by
interrogating the database with the ID of the operation. The possible scenarios are:

� the operation has completed successfully and the return message should be
retransmitted to the adapter;

� the operation is not received by the backoffice system and the original request
should be retransmitted;

� no response is received from the database on time. In that case the interrogation
of the database is retried several times before an error message is posted that
propagates back to the user and to a specific system administrator.

3. The operation has completed successfully or is aborted. Now the log ID can be removed
form the database in the backoffice.

3.3.2 Frontoffice adapter

In this case study, we consider a frontoffice application implemented in Sun’s 4GL.
Unfortunately, most OOPLs don’t natively support serialization of object data to XML and vice
versa. As shown in figure 3, a specific frontoffice adapter takes care of this.

<xml>
 <data/>
</xml>

<xml>
 <data/>
</xml>Business Process

Adapter

Parser
<xml>
 <data/>
</xml>

Contract

Message

Objects

FrontOffice

Parser
<xml>
 <data/>
</xml>

Contract

<xml>
 <data/>
</xml>

Message

RBC RBC

Figure 3 Overview of the frontoffice adapter

The frontoffice adapter is coupled to the workflow system through a robotic client that

receives tasks from the workflow engine. The interactions are specified in a contract. The contract
is an XML document that defines the structure of the messages and the data types that can be
contained in an XML tag. Based on the contract, the robotic client will use a parser to validate an
incoming message and deserialize it into objects that can be used by the frontoffice application.

The data type information is essential to make the mapping of the data in the XML message to the
object attributes possible. For outgoing messages, the reverse action is taken and the objects are
serialized into XML messages.

4 Conclusion

EAI problems are very specific and extremely complex, no matter what some of the software
vendors may pretend. In practice, the coupling of a business workflow with intelligent adapters
turns out to be a very flexible and solid integration architecture. The encapsulation of a specific
integration workflow in the intelligent adapters prevents the business workflow from becoming
too complex. The architecture can be extended to integrate various legacy and frontoffice
applications.

5 References

[1] http://www.sun.com/forte/4gl/
[2] http://www.unisys.com/marketplace/linc/
[3] http://www.sun.com/forte/fusion/
[4] http://www.ibm.com/software/ts/mqseries/

