
Three-Property Preserving Iterations

of Keyless Compression Functions

Elena Andreeva1, Gregory Neven1, Bart Preneel1, Thomas Shrimpton2

1 SCD-COSIC, Dept. of Electrical Engineering, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

{Elena.Andreeva,Gregory.Neven,Bart.Preneel}@esat.kuleuven.be
2 Dept. of Computer Science, Portland State University

1900 SW 4th Avenue, Portland, OR 97201, USA

teshrim@cs.pdx.edu

Abstract

Almost all hash functions are based on the Merkle-Damg̊ard iteration of a finite-domain com-
pression function. It has been shown that this iteration preserves collision resistance, but it does
not preserve other properties such as preimage or second preimage resistance. The recently pro-
posed ROX construction provably preserves all seven security notions put forward by Rogaway
and Shrimpton at FSE 2004, but it does so for families of hash functions, that is, the compression
function is indexed by a public parameter known as a key. Practical hash functions however do
not have such a parameter, so it is not entirely clear how to instantiate these schemes. We use
Rogaway’s human-ignorance approach to resolve this situation, and present four different iterations
(two of them chaining-based, two of them tree-based) that provably preserve all three notions of
collision, preimage and second preimage resistance.

Keywords: Cryptographic hash functions, Merkle-Damg̊ard, ROX, collision resistance, preimage
resistance, second preimage resistance, provable security.

1 Introduction

A cryptographic hash function maps messages of arbitrary length to a fixed-length hash value that acts
as a “fingerprint” for the message. Their main security requirement is collision resistance, meaning
that it should be hard to find two different messages with the same hash value. Practical hash functions
today are almost always constructed by iterating a finite-domain compression function, typically using
the Merkle-Damg̊ard chaining method [Mer90, Dam90]. The main feature of the construction is that
it preserves collision resistance, meaning that if the compression function is collision resistant, then
the iterated hash function is collision resistant as well.

But collision resistance may not be the only property that we are interested in. Second-preimage
resistance for example requires that it is hard to, given a random message, find a second message
that has the same hash value. This is the type of security required when using hash values to guard
integrity of data, for example of files stored on a hard disk. Also, a variant of second preimage resistant
hash functions can be used to build secure hash-and-sign signature schemes [BR97]. A third property
one may require is preimage resistance, meaning that given a random hash value, it should be hard to
come up with a message that hashes to this value. Preimage resistance is the type of property needed
for the protection of stored passphrases.

Rogaway and Shrimpton [RS04] studied seven different security notions for hash functions and the
relations among them. Their notions include the three main ones of collision (Coll), second preimage

1

mailto:{Elena.Andreeva,Gregory.Neven,Bart.Preneel} @esat.kuleuven.be
teshrim@cs.pdx.edu
mailto:teshrim@cs.pdx.edu

(Sec) and preimage (Pre) resistance, and everywhere and always variants of the latter two (eSec, aSec,
ePre, aPre). They show that Coll directly implies Sec, and that Sec implies Pre if the hash function
is sufficiently compressing (which is the case for all practical purposes). When iterating a collision
resistant compression function using the Merkle-Damg̊ard construction, these implications show that
the resulting hash function is also second preimage and preimage resistant.

As recently argued by [ANPS07] however, this may not be satisfactory. In the light of recent
collision attacks on hash functions [WY05, WYY05], designing collision resistant hash functions seems
to be a highly non-trivial task. When the compression function is not collision resistant, then all
guarantees for the iterated function are off, as was illustrated by the second preimage attacks of
Kelsey and Schneier [KS05]. From a quantitative point of view, for a hash function with n-bit output
one can only expect to have collision resistance up to 2n/2 time steps due to birthday attacks, but one
would hope to have (second) preimage resistance up to 2n time steps. Since Merkle-Damg̊ard inherits
its (second) preimage resistance from collision resistance, it can only guarantee security up to 2n/2

time steps.

As a solution to this problem, the recently proposed ROX iteration [ANPS07] uses a small-input
random oracle to natively preserve all seven security notions of [RS04]. (The compression function
itself is still modeled as a real function, not as a random oracle.) An important discrepancy between
theory and practice of hash functions however is that to properly define collision resistance, one has
to look at hash functions as occurring in families, of which members are indexed by a publicly known
key. In practice, it is hard to see which part of the description of SHA-256 can be used as a key, or
even to describe the family it belongs to. This discrepancy was recently solved by Rogaway [Rog06],
who suggests to formulate theorems so that they prescribe an explicit reduction, rather than the
non-existence of an efficient algorithm.

Our contributions. The goal of this paper is to find and prove secure iterations of keyless com-
pression functions that natively preserve the three main notions of collision and (second) preimage
resistance. The iterations themselves can be keyed, as long as it is clear how to sample random keys.
This accommodates applications that need to sample a random member of a family of hash functions,
such as hash-and-sign signatures [BR97]. For applications that only need a single hash function, a
random key can be fixed in a standard.

First, it is worth noting that, as is the case for keyed compression functions [ANPS07], there
exist counterexamples of Sec and Pre secure keyless compression functions that, when iterated using
Merkle-Damg̊ard, are completely insecure. We revisit an iteration of keyless compression functions
due to Shoup [Sho00], for which he proved that if the compression function is Sec secure, then the
iterated hash function is eSec secure. The notion of eSec, sometimes also referred to as universal
one-way (UOWHF) or target collision resistant (TCR) hash functions, directly implies that of Sec,
and is of practical importance for use in signatures. Note that the iteration thereby achieves an even
stronger property than mere preservation, namely “promotion” of Sec security to the stronger eSec
notion. We prove that the SH iteration, as we call it here, also preserves collision resistance (in the
sense of [Rog06]) and Pre security.

Next, we propose the modified XOR-Tree hash (mXT), which is an adaptation of the XOR-Tree
hash of [BR97], and prove that it also preserves all three notions of Coll, Sec, and Pre. As was
the case for the SH iteration, we even prove a stronger result that Sec security of the compression
function yields eSec security for the hash function. While often considered less desirable than chaining
constructions because of their higher memory usage, tree constructions have the advantage of being
naturally parallelizable, making them perfectly suited for hashing large amounts of static data.

Both the SH and the mXT hashes have the disadvantage of having a key length that is logarithmic
in the message length. Especially for the application to signatures this is problematic, as these require
to sign the key along with the message, and the underlying signature scheme may not be able to

2

accommodate for this. We therefore apply a technique from [ANPS07] to achieve constant (say, 128-
bit) key length by generating the other keys through a random oracle. This random oracle has a
small input size (around 134 bits) and is applied only a logarithmic number of times (in the message
length), and therefore could be instantiated using a primitive like AES that is considered too expensive
to apply a linear number of times.

What about other properties? The security notions formalized by [RS04] are certainly not the
only ones of interest. Bellare and Ristenpart [BR06], following previous work by Coron et al. [CDMP05]
and Bellare et al. [BCK96], formalize pseudorandom oracle preservation (PRO-Pr) and pseudorandom
function preservation (PRF-Pr) as goals. Their EMD construction is shown to be PRO-Pr, PRF-Pr
and to preserve collision resistance. Kelsey and Kohno [KK06] suggest chosen-target forced-prefix
security as the right goal to stop Nostradamus attacks. We leave the study of the preservation of these
properties by the investigated in this paper constructions to future work.

2 Security Definitions

Notation. In this section, we explain the security notions for families of hash functions of [RS04].
Let us begin by establishing some notation. Let N = {0, 1, . . .} be the set of natural numbers and
{0, 1}∗ be the set of all bit strings. If k ∈ N, then {0, 1}k denotes the set of all k-bit strings. The
empty string is denoted ε. If x is a string and i ∈ N, then x(i) is the i-th bit of x. If x, y are strings,
then x‖y is the concatenation of x and y. If k, l ∈ N then 〈k〉l is the encoding of k as an l-bit string.
We occasionally write 〈k〉 when the length is clear from the context.

If S is a set, then x
$

← S denotes the uniformly random selection of an element from S. We let

y ← A(x) and y
$

← A(x) be the assignment to y of the output of a deterministic and randomized
algorithm A, respectively, when run on input x.

An adversary is an algorithm, possibly with access to oracles. To avoid trivial lookup attacks, it
will be our convention to include in the time complexity of an adversary A its running time and its
code size (relative to some fixed model of computation).

Security of compression functions. In this work we consider fixed-input-size compression
functions to be unkeyed, modeling most closely real-world compression functions such as SHA-256,
and we assume arbitrary-input-size hash functions are families of functions indexed by keys. We first
give advantage definitions for collision (Coll), second preimage (Sec), and preimage resistance (Pre)
for the former. A compression function is a function F :M→ Y whereM and Y are finite sets of bit
strings. For a fixed adversary A and λ ∈ N, we define the following advantage functions:

AdvColl
F (A) = Pr

[

M ′,M
$
← A(ε) : M 6= M ′ and F(M) = F(M ′)

]

Adv
Sec[λ]
F (A) = Pr

[

M
$
← {0, 1}λ ; M ′

$
← A(M) : M 6= M ′ and F(M) = F(M ′)

]

Adv
Pre[λ]
F (A) = Pr

[

M
$
← {0, 1}λ ; Y ← F(M) ; M ′

$
← A(Y) : F(M ′) = Y

]

The compression function F is said to be (t, ǫ) Sec or Pre secure if Adv
Sec[λ]
F (A) < ǫ or Adv

Pre[λ]
F (A) <

ǫ for all adversaries A running in time at most t and for all λ ∈ N such that {0, 1}λ ⊆M. Note that
it is impossible to define security for the case of Coll in an analogous way. Indeed, if collisions on F
exist, then an adversary A that simply prints out a collision that is hardcoded into it always has ad-
vantage 1. Rather than defining Coll security through the non-existence of an algorithm A, we follow
Rogaway’s human-ignorance approach [Rog06] and use the above advantage function as a metric to

3

relate the advantage of an adversary A against the hash function to that of an adversary B against
the compression function.

When giving results in the random oracle model, we also account for the total number of queries
qRO that the adversary makes to its random oracles. In this case, we will write (t, qRO, ǫ)-secure with
the obvious meaning. If the hash function uses multiple random oracles, we define qRO to be the sum
of the number of queries that the adversary can make to each separately.

Security of hash functions. A hash function family is a function H : K×M→ Y where the key
space K and the target space Y are finite sets of bit strings. The message spaceM could be infinitely
large; we only assume that there exists at least one λ ∈ N such that {0, 1}λ ⊆ M. Following [RS04],
we use the following advantage measures:

AdvColl
H (A) = Pr

[

K
$
← K ; (M,M ′)

$
← A(K) :

M 6= M ′ and
H(K,M) = H(K,M ′)

]

Adv
Sec[λ]
H (A) = Pr

[

K
$
← K ; M

$
← {0, 1}λ

M ′
$
← A(K,M)

:
M 6= M ′ and

H(K,M) = H(K,M ′)

]

AdveSec
H (A) = Pr

[

(M,St)
$
← A ; K

$
← K

M ′
$
← A(K,St)

:
M 6= M ′ and

H(K,M) = H(K,M ′)

]

Adv
Pre[λ]
H (A) = Pr

[

K
$
← K ; M

$
← {0, 1}λ

Y ← H(K,M) ; M ′
$
← A(K,Y)

: H(K,M ′) = Y

]

These are the standard three notions of collision-resistance (Coll), preimage resistance (Pre) and
second-preimage resistance (Sec), and the stronger variant of everywhere second-preimage resistance

(eSec). For atk ∈ {Coll, eSec}, we say that H is (t, ǫ) atk secure if Advatk
H (A) < ǫ for all adversaries A

running in time at most t. For atk ∈ {Sec, Pre}, we say that H is (t, ǫ) atk secure if Adv
atk[λ]
H (A) < ǫ

for all adversaries A running in time at most t and for all λ ∈ N such that {0, 1}λ ⊆M.

Security preservation. Our goal is to build an infinite-domain hash function family H out of a
limited-domain compression function F so that the hash function “inherits” its Coll, Sec, and Pre
security from the natural analogues of these properties for F. For atk ∈ {Sec, Pre}, we say that H
preserves atk security if H is (t, ǫ) atk secure whenever F is (t′, ǫ′) atk secure, for some well-specified
relation between t, t′, ǫ, ǫ′. For the case of Coll, we have to be more careful because, as pointed
out before, (t, ǫ)-Coll security cannot be defined for the keyless compression function F. Rather, we
follow Rogaway [Rog06] by saying that collision resistance is preserved if, for an explicitly given Coll
adversary A against H, there exists a corresponding, explicitly specified Coll adversary B, as efficient
as A, that finds collisions for H.

3 A Chaining Construction

Rogaway [Rog06] showed that the Merkle-Damg̊ard iteration preserves collision resistance for key-
less compression functions. However, one can come up with counterexamples (see [ANPS07] and
Appendix B) to demonstrate that it does not preserve second-preimage or preimage resistance.

Shoup [Sho00] presented a keyed iteration of keyed compression functions that preserves eSec
security, and at the end of the paper also showed how a keyed eSec secure compression function can
be constructed from an unkeyed Sec secure one. Since eSec security implies Sec security [RS04], this
instantiation of Shoup’s iteration yields the first, and to the best of our knowledge only known iteration

4

hℓ

Kν(1) Kν(2) Kν(ℓ)

IV

m1 m2 mℓ

F

R R R

F F

Figure 1: The Shoup’s Hash with Keyless Compression Function.

of an unkeyed compression function that preserves Sec security. In fact, it achieves an even stronger
property because it “promotes” Sec security of the compression function to eSec security for the hash
function. This is important for hash-and-sign signatures [BR97].

We revisit Shoup’s iteration here instantiated with a keyless compression function F as prescribed
in [Sho00]. For a compression function F : {0, 1}b+n → {0, 1}n, a fixed initialization vector IV ∈
{0, 1}n, b-bit key R and n-bit keys K0‖ . . . ‖Klmax

, it is given by

Algorithm SH F(R‖K0‖ . . . ‖Klmax
, M):

m1‖ . . . ‖mℓ ← ls-pad(M) ; h0 ← IV

For i = 1, . . . , ℓ do hi ← F (mi ⊕R‖hi−1 ⊕Kν(i))

Return hℓ .

A graphical representation of Shoup’s hash is given in Figure 1. Here, lmax = ⌈log2(Λ/b)⌉, where Λ is
the maximum message length; ls-pad(M) splits M up in ℓ blocks of size b by padding the message M
with bits 10 . . . 0 up to the next multiple of b and adding a length strengthening block 〈M〉b; and ν(i)
is the largest integer j such that 2j | i.
In the following, we show that apart from second-preimage resistance, the SH F iteration also preserves
collision and preimage resistance.

Theorem 3.1 If there exists an explicitly given adversary A that (t, ǫ)-breaks the Coll security of
SH F, then there exists an explicitly given adversary B that (t′, ǫ′)-breaks the Coll security of F for
ǫ′ ≥ ǫ and t′ ≤ t + 2ℓ · τF, where τF is the time needed for one evaluation of F, ℓ = ⌈λ/b⌉+ 1, and λ is
the maximum length of the two messages output by A.

Proof: Given a Coll-adversary A against SH F, we construct the Coll adversary B against F. First

B chooses random key strings R
$

← {0, 1}b and K0, . . . , Klmax

$

← {0, 1}n. B runs A on input K =
R‖K0‖ . . . ‖Klmax

to obtain a pair of colliding messages M and M ′. Let m1‖ . . . ‖mℓ ← ls-pad(M),
m′

1‖ . . . ‖m′
ℓ′ ← ls-pad(M ′), and let h0, . . . , hℓ and h′

0, . . . , h
′
ℓ′ be the intermediate hash values obtained

in the SH computation of M and M ′, respectively.

We know that hℓ = h′
ℓ′ . If |M | 6= |M ′|, then mℓ 6= m′

ℓ′ and B outputs (mℓ ⊕ R‖hℓ−1 ⊕ Kν(ℓ)) and
(m′

ℓ′ ⊕R‖h′
ℓ′−1⊕Kν(ℓ′)) as its colliding pair. If hℓ−1⊕Kν(ℓ) 6= h′

ℓ′−1⊕Kν(ℓ′) then B outputs the same
pair as its collision.

Otherwise, we have that |M | = |M ′| and therefore that ℓ = ℓ′. If mℓ−1 6= m′
ℓ−1 or hℓ−2 ⊕Kν(ℓ−1) 6=

h′
ℓ−2 ⊕Kν(ℓ−1), then B outputs (mℓ−1 ⊕R)‖(hℓ−2 ⊕Kν(ℓ−1)) and (m′

ℓ−1 ⊕R)‖(h′
ℓ−2 ⊕Kν(ℓ−1)) as its

colliding messages. Otherwise, we have that hℓ−2 = h′
ℓ−2, so we can repeat the same reasoning for the

case that mℓ−2 6= m′
ℓ−2 or hℓ−3 ⊕ Kν(ℓ−2) 6= h′

ℓ−3 ⊕ Kν(ℓ−2). Proceeding this way from right to left
throughout the chain, one can see that at some point B will find a collision on F, unless M = M ′.

Theorem 3.2 If F is (t′, ǫ′) Pre-secure, then SH F is (t, ǫ) Pre-secure for ǫ ≥ ǫ′ and t ≤ t′ − ℓ · τF,
where τF is the time required for an evaluation of F, ℓ = ⌈λ/b⌉, and λ is the maximum message length

5

Proof: Given a Pre[λ]-adversary A against SH F, consider the following Pre-adversary B against F.

B gets as input a random target value Y . It chooses random keys R
$

← {0, 1}b and K1, . . . , Klmax

$

←
{0, 1}n, and runs A on input K = R‖K0‖ . . . ‖Klmax

and Y until it outputs a preimage M ′. Let
m′

1‖ . . . ‖m′
ℓ′ ← ls-pad(M ′) and let h′

0, . . . , h
′
ℓ′ be the intermediate hash values obtained when com-

puting SH F(K, M ′) as described above. Algorithm B outputs (m′
ℓ′ ⊕ R)‖(h′

ℓ′−1 ⊕Kν(ℓ′)) as its own
preimage.

It is important to realize here that, due to the random choice of the keys, the target point Y given as
input to B is also correctly distributed as an input for A. Namely, Y follows the distribution induced
by applying F to a random input from {0, 1}b+n. Algorithm A expects a target point Y that is the
output of SH F(K, M) for a random key K and a random message M . The final message block mℓ

and intermediate hash hℓ−1 are not necessarily random (in fact, mℓ = |M | is non-random), but due to
the XOR with fresh keys R and Kν(ℓ) the input to the last compression function are indeed random.

4 A Tree Construction

A major disadvantage of chaining constructions is that the computations cannot be parallelized.
Indeed, the next compression function cannot be evaluated until the output of the previous one is
known. For applications where large amounts of data have to be hashed using parallel processors, tree
constructions can be more appropriate. They have the disadvantage of a larger state information that
needs to be kept (logarithmic in the message length, as opposed to linear), but have the advantage
that different branches in the tree can be computed independently and later combined to compute the
final hash value.

The simplest tree iteration is the (strengthened) Merkle tree [Mer80]. It can be shown to pre-
serve collision resistance of the underlying compression function, but counterexamples similar to those
of [ANPS07] can be used to show that second-preimage and preimage resistance are not preserved. A
second candidate is the XOR-Tree construction of [BR97]. We show in Appendix C that this iteration
preserves preimage resistance, but were unable to show or contradict the preservation of Coll and
Sec. We managed to prove that the XOR-Tree hash is collision resistant if the compression function
satisfies the stronger property of δ-collision resistance, but this is not the “pur-sang” preservation of
Coll that we are looking for. (See Appendix C for details.)

We therefore describe a slightly modified construction called the modified XOR-Tree (mXT) hash
here, and prove that it preserves all three notions of Coll, Sec, and Pre. First we introduce some
additional notation for tree hashes. With a we denote the arity of tree hash structures, that is the
number of inputs to a node, equivalent here to number of equal length inputs to the compression
function. The depth of the tree is denoted by d and the enumeration of tree levels starts from index
one, the widest part of the tree (level with maximal number of nodes), to reach the level d at the root
of the tree. For a compression function F : {0, 1}an → {0, 1}n, the mXT scheme proceeds as follows:

Algorithm mXT F(K1‖ . . . ‖Kdmax
‖K∗ , M):

m1‖ . . . ‖mad ← tpad(M)
For j = 1, . . . , ad do h0,j ← mj

For i = 1, . . . , d and j = 1, . . . , ad−i do
hi,j ← F

(

(hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki

)

hd+1,1 ← F
(

(hd,1‖〈|M |〉n(a−1))⊕K∗
)

Return hd+1,1

We provide the graphical description of the modified XOR-Tree in Figure 2. Here, dmax = ⌈loga Λ⌉
where Λ is the maximum message length, and tpad is a padding function that appends bits 10 . . . 0 to

6

m1 m2 m3 m4

F F

F

F

K2

K1 K1

h1,1

K∗

h2,1

h1,2

h3,1

〈|M |〉n

Figure 2: The Modified XOR-Tree Hash with Keyless Compression Function. We illustrate a tree
of depth d = 2 and arity a = 2.

the end of M until it has length ad for some integer d ∈ N. The only difference with the original XOR-
Tree scheme is that here, the key K∗ used before the final application of the compression function is
always the same. That means K∗ is independent of the tree depth, while in the original scheme it
would simply be the next key in the sequence Kd+1.

The following theorems show that the modified XOR-Tree iteration preserves all three of Coll,
Sec, and Pre. In fact, Theorem 4.2 proves an even stronger result, analogously to the case of SH F.
Namely, it shows that if F is Sec secure, then the iterated hash mXT F achieves the stronger notion of
eSec security. Similarly to the SH F, the Sec preservation of the mXT F is implied by the eSec result.

Theorem 4.1 If there exists an explicitly given adversary A that (t, ǫ)-breaks the Coll security of
mXT F, then there exists an explicitly given adversary B that (t′, ǫ′)-breaks the Coll security of F for

ǫ′ ≥ ǫ and t′ ≤ t + 2(ad−1
a−1 + 1) · τF, where τF is the time needed for one evaluation of F, where d is the

smallest integer such that ad ≥ λ, and where λ is the maximum message length.

Proof: Given a Coll adversary A against mXT F, we build the following Coll adversary B against F.

B generates random keys K1, . . . , Kdmax
, K∗ $

← {0, 1}an and runs A on input K = K1‖ . . . ‖Kdmax
‖K∗

until it outputs a pair of colliding messages M and M ′. Let m1‖ . . . ‖mℓ ← tpad(M), m′
1‖ . . . ‖m′

ℓ′ ←
tpad(M ′), and hd,1 and h′

d′,1 be the one-but-last output hash values computed in the execution of
mXT F(M) and mXT F(M ′) respectively.

If |M | 6= |M ′|, then
(

hd,1‖〈|M |〉(a−1)n

)

⊕K∗ and
(

h′
d′,1‖〈|M

′|〉(a−1)n

)

⊕K∗ are clearly different, so this
pair of inputs to F is a valid colliding pair for B. Also, if hd 6= h′

d′ , then this pair of messages forms a
valid colliding pair for B.

Otherwise, we know that |M | = |M ′| and therefore that d′ = d. If hd−1,j 6= h′
d−1,j for some 1 ≤ j ≤ a,

then the inputs
(

hd−1,1‖ . . . ‖hd−1,a

)

⊕ Kd and
(

h′
d−1,1‖ . . . ‖h′

d−1,a

)

⊕ Kd form a valid colliding pair
for F. Continuing this argument, B can proceed bottom-up throughout the tree until a colliding pair
of inputs is found, unless M = M ′. The running time of B equals that of A plus up to 2(ad−1

a−1 + 1)
evaluations of F.

Theorem 4.2 If F is (t′, ǫ′) Sec secure, then mXT F is (t, ǫ) eSec secure for ǫ ≥ (ad−1
a−1 + 1)ǫ′ and

t ≤ t′ − 2(ad−1
a−1 + 1) · τF, where τF is the time needed for an evaluation of F, where λ is the maximum

message length, and where d is the smallest integer such that ad ≥ λ.

Proof: Given a eSec-adversary A against mXT F, consider the following Sec-adversary B against F.
B is given as input a random message x = x1‖ . . . ‖xa ∈ {0, 1}an where |xi| = n for i = 1 . . . a. B

7

runs A to obtain A’s target message M . Let λ = |M | and m1‖ . . . ‖mℓ ← tpad(M). The goal of B

is to correctly embed its challenge message x in the mXT iteration and B achieves this in the choice

of key sequence for A. Hence B selects a random index i
$

← {1, . . . , (ad−1
a−1 + 1)}. If i ∈ {1, . . . , ℓ},

then B sets K1 = x ⊕ (m(i−1)a+1‖ . . . ‖mai) and chooses the rest of the keys K2, . . . , Kdmax
, K∗ at

random. If i ∈ {ℓ, . . . , ad−1
a−1 }, then B chooses at random keys K1, . . . , Kj−1 and Kj+1, . . . , Kdmax

, K∗

and sets Kj = x ⊕ (hj,(k−1)a+1‖ . . . ‖hj,ka). We compute j as the smallest integer, such that the

inequality
∑j

y=1 ad−1−y ≥ i is satisfied, or j = ⌈(d−loga (i(1− a) + ℓ))⌉, and k = i−
∑d−1

y=d−j+1 ad−1−y.

Finally, if i = ad−1
a−1 + 1, then B chooses at random keys K1, . . . , Kdmax

and sets the value of K∗ =
x⊕ (hd,1‖〈|M |〉(a−1)n).

Next, A obtains the generated keys K1‖ . . . ‖Kdmax
‖K∗ from B and outputs its colliding second preim-

age message M ′. Identically to the proof in Theorem 4.1, B searches for colliding inputs to the
compression function F. With probability a−1

ad−a−2
B finds the colliding pair at the correct position i

(at which its challenge message x was embedded) and outputs the colliding F input as its valid second
preimage.

Theorem 4.3 If F is (t′, ǫ′) Pre-secure, then mXT F is (t, ǫ) Pre-secure for ǫ ≥ ǫ′ and t ≤ t′− (ad−1
a−1 +

1) · τF, where τF is the time needed for an evaluation of F, where λ is the length of the message output
by A, and where d is the smallest integer such that ad ≥ λ.

Proof: Given a Pre[λ]-adversary A against XT F, consider the following Pre-adversary B against F.
B obtains a target value Y (computed for a random message input x = x1‖ . . . ‖xa of an-bits) and
generates at random an(d + 1)-bit sequence of key strings K1‖ . . . ‖Kdmax

‖K∗. B runs A on the
same target value Y and the generated key sequence. A returns to B its preimage message M ′. Let
m′

1‖ . . . ‖m′
ℓ ← tpad(M ′) and let h′

d,1 be the one-but-last output hash value computed in an execution
of mXT F(K1‖ . . . ‖Kd‖K

∗, M ′). Algorithm B outputs (h′
d,1‖〈|M |〉(a−1)n ⊕ K∗) as its own preimage.

Notice that the output distributions induced by the random choice of the input x to F and M ′ to
mXT F do not differ in a similar way to the Pre-security (Theorem 3.2) of SH .

5 Shorter Keys using Random Oracles

A major disadvantage of Shoup’s and the XOR-Tree hashes is that they require keys that are logarith-
mic in the message length. While this is of course much better than key length linear in the message
length, it can still be problematic for certain applications. For example, when using the construction
of hash-and-sign signatures from eSec secure hash functions of [BR97] in combination with DSA, the
hash value and the keys together have to be encoded as an integer modulo the group order. For a
security level of 128 bits, in principle one needs a group order of size 256 bits for the discrete logarithm
problem to be hard. However, if we want to sign messages up to 220 blocks, then the hash value and
the keys together take 128 + 20 · 128 = 2688 bits. (Note that to get 128 bits of eSec security, a hash
function with 128-bit output can suffice.) Since exponentiation is a cubic operation, increasing the
group order to this size makes exponentiations (2688/256)3 ≈ 1158 times more expensive!

In this section, we use a technique from [ANPS07] and show how the key length can be further
reduced to 128 bits by having the keys generated through a random oracle. In the application to
hash-and-sign signature sketched above, this means that the hash and key fit nicely within the space
of a 256-bit group order.

While it may be controversial to use a random oracle in a hash iteration, we stress that it is not

the compression function itself that is modeled as a random oracle. Moreover, the random oracle used
in the iteration has a very limited input size, typically around 134 bits to achieve a 128-bit security
level.

8

5.1 Shorter Keys for Shoup’s Hash

Let F : {0, 1}b+n → {0, 1}n be a compression function, let RO1 : {0, 1}k × {0, 1}l → {0, 1}n and
RO2 : {0, 1}k → {0, 1}b be random oracles where l = ⌈log2 log2 Λ/b⌉, and let the functions ν(·) and
ls-pad(·) are defined as for the SH F construction. The random-oracle Shoup iteration rSH F is given
by

Algorithm rSH F(K, M):
m1‖ . . . ‖mℓ ← ls-pad(M); h0 ← IV

For i = 0, . . . , ⌈log2 ℓ⌉ do Ki ← RO1(K, 〈i〉l)
R← RO2(K)
For i = 1, . . . , ℓ do hi ← F(mi ⊕R‖hi−1 ⊕Kν(i))

Return hℓ .

The theorems below state that the random-oracle Shoup iteration preserves collision, second-
preimage, and preimage resistance in the random oracle model. The proofs are quite similar to those
of the standard Shoup iteration. Rather than reproving the full scheme here, we sketch how the proofs
differ from their analogues for SH F.

Theorem 5.1 If there exists an explicitly given adversary A that (t, qRO, ǫ)-breaks the Coll security of
rSH F when RO1, RO2 are modeled as random oracles, then there exists an explicitly given adversary
B that (t′, ǫ′)-breaks the Coll security of F for ǫ′ ≥ ǫ and t′ ≤ t + qRO + 2ℓ · τF, where τF is the time
needed for one evaluation of F, ℓ = ⌈λ/b⌉ + 1, and λ is the maximum length of the two messages
output by A.

Proof: (Sketch) The only difference with the proof of Theorem 3.1 is in the way B generates the
keys. Instead of selecting random strings R, K0, . . . , Klmax

, now B simply generates a random string

K
$

← {0, 1}k. It then runs A on input K, responding to its random oracle queries as usual, i.e. by
returning random values for new queries and being consistent for previously asked queries. In estimate
for the running time t, we assume that responding a random oracle query this way takes unit time.

Theorem 5.2 If F is a (t′, ǫ′) Sec secure compression function, then rSH F is a (t, qRO, ǫ) eSec secure
hash function in the random oracle model for ǫ ≥ ℓǫ′ + qRO/2k and t ≤ t′ − qRO − 2ℓ · τF. Here, RO1

and RO2 are modeled as random oracles, τF is the time required for an evaluation of F, ℓ = ⌈λ/b⌉ and
λ is the maximum message length.

Proof: Given a eSec-adversary A against rSH F, consider the following Sec-adversary B against F. B

gets as input a random b + n-bits target message x = x1‖x2 (|x1| = b and |x2| = n). Then B runs A

to obtain its target message M . Let m1‖ . . . ‖mℓ ← ls-pad(M). Then B generates a k-bit key K at
random. B simulates the answers to A’s random oracle queries RO1 and RO2 by running algorithm
RO-Sim1 and RO-Sim2 as described in Appendix A. It also maintains associative arrays T1[·] and
T2[·].

B then chooses at random an index i
$

← {1 . . . ℓ} and embeds its x1 and x2 target values in the rSH
iteration of M by preprogramming the values of R and Kν(i) in T2 and T1 respectively. To enforce
that R = mi ⊕ x1 (from x1 = mi ⊕R), then B preprograms it into RO2 by setting T2[K]← mi ⊕ x1.
To enforce that Kν(i) = hi−1⊕x2 (from x2 = hi−1⊕Kν(i)), algorithm B runs the mask reconstruction
algorithm MaskRec of Appendix A on inputs K, m1, . . . , mi, x2 and obtains the µν(1), . . . , µν(ℓ) values.
B programs these into RO1 by setting T1[K, j]← µj for 0 ≤ j ≤ l. The value obtained for hi−1⊕Kν(i)

then equals x2. If any of the hash table entries T1[K, j] or T2[K] were already defined, then B aborts.
This happens only when A was able to predict K though, which happens with probability qRO/2k.

9

Algorithm B then runs A on input K and continues responding to its random oracle queries until A

outputs its second preimage M ′. Messages M and M ′ collide, if a collision occurs either in the final
F call for |M | 6= |M ′|, or for an internal F call in the rSH F chain for |M | = |M ′|.

Whenever A wins, then B succeeds when it has embedded its challenge message at the correct i-th
position (i = correct) and A has asked not a valid random query (guessed the key) in the first phase of
the game. Let E be the event that at least one of the preprogrammed masks is queried on a different
input and let abort be the event that B aborts. Since B perfectly simulates A’s environment, the
advantage of B is given by

ǫ′ ≥ Pr [A wins ∧ i = correct ∧ abort]

= Pr [A wins ∧ i = correct : abort] · Pr [abort]

≥ Pr [A wins ∧ i = correct : abort] · (1− Pr [E])

≥
ǫ

ℓ

(

1−
qRO

2k

)

≥
1

ℓ

(

ǫ−
qRO

2k

)

.

In estimate for the running time t, we assume that responding a random oracle query takes unit time.

Theorem 5.3 If F is a (t′, ǫ′) Sec secure compression function, then rSH F is a (t, qRO, ǫ) Sec secure
hash function in the random oracle model for ǫ ≥ ℓǫ′ and t ≤ t′ − qRO − 2ℓ · τF. Here, RO1 and RO2

are modeled as random oracles, τF is the time required for an evaluation of F, ℓ = ⌈λ/b⌉ and λ is the
maximum message length.

Proof: (Sketch) The proof for Sec security preservation follows from the result of Theorem 5.2. Notice
that here we get a tighter security bound because of the loss of qRO/2k term in the security reduction.
This is true, because in the Sec preservation proof, B runs A after the masks R and µν(1), . . . , µν(ℓ)

generation and their preprogramming in its hash tables T2[·] and T1[·] respectively. Hence A is not
given access to a random oracle in the first mask generation phase. In the second phase, B runs A on
the randomly chosen K and a random target message M . The answers to valid (for a valid key K)
random oracle queries from A are valid existing entries from B’s hash tables.

Theorem 5.4 If F is a (t′, ǫ′) Pre secure compression function, then rSH F is a (t, qRO, ǫ) Pre secure
hash function in the random oracle model for ǫ ≥ ǫ′ and t ≤ t′ − qRO − ℓ · τF. Here, RO1 and RO2

are modeled as random oracles, τF is the time required for an evaluation of F, ℓ = ⌈λ/b⌉ and λ is the
maximum message length.

Proof: (Sketch) The only difference with the proof of Theorem 3.2 is that instead of choosing random

keys R, K0, . . . , Klmax
, algorithm B chooses K

$

← {0, 1}k and lets the other keys be defined by the
random oracles that are simulated in the usual way (similarly to the Proof of Theorem 5.1).

5.2 Shorter Keys for the XOR-Tree

Given a compression function F : {0, 1}an → {0, 1}n and random oracles RO1 : {0, 1}k × {0, 1}l →
{0, 1}an, RO2 : {0, 1}k → {0, 1}an where l = ⌈log2 log2 Λ⌉, the random-oracle XOR-Tree is given by:

Algorithm mXT F(K, M):
m1‖ . . . ‖mad ← tpad(M)
For i = 1, . . . , d do Ki ← RO1(K, 〈i〉l)

10

K∗ ← RO2(K)
For j = 1, . . . , ad do h0,j ← mj

For i = 1, . . . , d and j = 1, . . . , ad−i do
hi,j ← F

(

(hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki

)

hd+1,1 ← F
(

(hd,1‖〈|M |〉n(a−1))⊕K∗
)

Return hd+1,1

The tree padding function tpad is defined as for mXT F. The rTXOR hash clearly builds on the mXT
construction by generating all necessary keys using random oracles RO1, RO2. The theorems below
show that collision, second-preimage, and preimage security are preserved in the rTXOR iteration. We
present these theorems without proofs, simply because they are adaptations of the proofs for mXT in
the same way that the proofs for rSH are adaptations of those for SH .

Theorem 5.5 If there exists an explicitly given adversary A that (t, qRO, ǫ)-breaks the Coll security
of rTXOR F when RO1, RO2 are modeled as random oracles, then there exists an explicitly given

adversary B that (t′, ǫ′)-breaks the Coll security of F for ǫ′ ≥ ǫ and t′ ≤ t + qRO + 2(ad−1
a−1 + 1) · τF,

where τF is the time required for an evaluation of F, where d is the smallest integer such that ad ≥ λ,
and λ is the maximum message length.

Theorem 5.6 If F is a (t′, ǫ′) Sec secure compression function, then rTXOR F is a (t, qRO, ǫ) eSec secure

hash function in the random oracle model for ǫ ≥ (ad−1
a−1 +1)ǫ′+qRO/2k and t ≤ t′−qRO−2(ad−1

a−1 +1)·τF.
Here, RO1 and RO2 are modeled as random oracles, τF is the time required for an evaluation of F,
where d is the smallest integer such that ad ≥ λ, and λ is the maximum message length.

Theorem 5.7 If F is a (t′, ǫ′) Sec secure compression function, then rTXOR F is a (t, qRO, ǫ) Sec secure

hash function in the random oracle model for ǫ ≥ (ad−1
a−1 + 1)ǫ′ and t ≤ t′ − qRO − 2(ad−1

a−1 + 1) · τF.
Here, RO1 and RO2 are modeled as random oracles, τF is the time required for an evaluation of F,
where d is the smallest integer such that ad ≥ λ, and λ is the maximum message length.

Theorem 5.8 If F is a (t′, ǫ′) Pre secure compression function, then rTXOR F is a (t, qRO, ǫ) Pre secure

hash function in the random oracle model for ǫ ≥ ǫ′ and t ≤ t′ − qRO − (ad−1
a−1 + 1) · τF. Here, RO1

and RO2 are modeled as random oracles, τF is the time required for an evaluation of F, where d is the
smallest integer such that ad ≥ λ, and λ is the maximum message length.

Acknowledgements

This work was supported in part by the European Commission through the IST Programme under
Contract IST-2002-507932 ECRYPT, and in part by the Concerted Research Action (GOA) Ambiorics
2005/11 of the Flemish Government and the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy). The work of the first author has been funded by a Ph.D. grant of the
Flemish institute for BroadBand Technology (IBBT). The second author is a Postdoctoral Fellow of
the Flemish Research Foundation (FWO - Vlaanderen). The fourth author was supported by NSF
CNS-0627752.

References

[ANPS07] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-
property preserving iterated hashing: ROX. Cryptology ePrint Archive, Report, 2007.
http://eprint.iacr.org/. (Cited on pages 2, 3, 4, 6, 8 and 13.)

11

http://eprint.iacr.org/

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109
of Lecture Notes in Computer Science, pages 1–15, Santa Barbara, CA, USA, August 18–
22, 1996. Springer-Verlag, Berlin, Germany. (Cited on page 3.)

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 470–484, Santa Barbara, CA, USA,
August 17–21, 1997. Springer-Verlag, Berlin, Germany. (Cited on pages 1, 2, 5, 6, 8 and 14.)

[BR06] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain exten-
sion: The EMD transform. In Kaoru Kurosawa, editor, Advances in Cryptology – ASI-

ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314, Shang-
hai, China, December 3–7, 2006. Springer-Verlag, Berlin, Germany. (Cited on page 3.)

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damg̊ard revisited: How to construct a hash function. In Victor Shoup, editor, Advances

in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
430–448, Santa Barbara, CA, USA, August 14–18, 2005. Springer-Verlag, Berlin, Germany.
(Cited on page 3.)

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor, Advances

in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
416–427, Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag, Berlin, Germany.
(Cited on page 1.)

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus
attack. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 183–200, St. Petersburg,
Russia, May 28 – June 1, 2006. Springer-Verlag, Berlin, Germany. Available from
http://eprint.iacr.org/2005/281. (Cited on page 3.)

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 474–490, Aarhus, Denmark,
May 22–26, 2005. Springer-Verlag, Berlin, Germany. (Cited on page 2.)

[Mer80] Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security

and Privacy, pages 122–134. IEEE Computer Society Press, 1980. (Cited on page 6.)

[Mer90] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, Advances

in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
428–446, Santa Barbara, CA, USA, August 20–24, 1990. Springer-Verlag, Berlin, Germany.
(Cited on page 1.)

[Mir01] Ilya Mironov. Hash functions: From Merkle-Damg̊ard to Shoup. In Birgit Pfitzmann,
editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in

Computer Science, pages 166–181, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag,
Berlin, Germany. (Cited on page 13.)

[Rog06] Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without the
keys. In Vietcrypt 2006, volume 4341 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 2006. (Cited on pages 2, 3 and 4.)

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and col-
lision resistance. In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption 2004,
volume 3017 of Lecture Notes in Computer Science, pages 371–388. Springer-Verlag, Berlin,
Germany, 2004. (Cited on pages 1, 2, 3 and 4.)

12

http://eprint.iacr.org/2005/281

[Sho00] Victor Shoup. A composition theorem for universal one-way hash functions. In Bart
Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture

Notes in Computer Science, pages 445–452, Bruges, Belgium, May 14–18, 2000. Springer-
Verlag, Berlin, Germany. (Cited on pages 2, 4 and 5.)

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture

Notes in Computer Science, pages 19–35, Aarhus, Denmark, May 22–26, 2005. Springer-
Verlag, Berlin, Germany. (Cited on page 2.)

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture

Notes in Computer Science, pages 17–36, Santa Barbara, CA, USA, August 14–18, 2005.
Springer-Verlag, Berlin, Germany. (Cited on page 2.)

A Shoup Key Schedule and Random Oracles

Algorithm MaskRec(m1, . . . ,mr, g)

j ← r ; For i = 0, . . . , t = ⌊log2 r⌋ do µi ← ⊥
Repeat while j > 0

j′ ← j − 2ν(j) ; g′
$
← {0, 1}n

For i = j′ + 1, . . . , j − 1 do if µi = ⊥ then µi
$
← {0, 1}n

If j′ = 0 then h0 ← IV else hj′ ← F(mj′‖g′)
For i = j′ + 1, . . . , j − 1 do

gi ← hi−1 ⊕ µν(i) ; hi ← F(mi‖gi)
µν(j) ← gj−1 ⊕ g′ ; j ← j′ ; g ← g′

For i = 0, . . . , t do if µi = ⊥ then µi
$
← {0, 1}n

Return (µ0, . . . , µt)

Algorithm RO-Sim1(K,x)

If T1[K,x] = ⊥ then

T1[K,x]
$
← {0, 1}n

Return T1[K,x]

Algorithm RO-Sim2(K)

If T2[K] = ⊥ then

T2[K]
$
← {0, 1}b

Return T2[K]

Figure 3: Algorithms used in the proofs. On the left, we recall the mask reconstruction algorithm of [Mir01]
(M is parsed as b-bit blocks). On the right, we give the algorithms used to simulate the random oracles.

B Merkle-Damg̊ard does not Preserve (Second) Preimage Resis-
tance

We show that the strengthened Merkle-Damg̊ard (sMD) hash does not preserve the Sec and Pre-
security by building the following Sec and Pre-secure counterexample compression function.

Theorem B.1 For atk ∈ {Sec, Pre}, if there exists a (t, ǫ) atk-secure compression function G :
{0, 1}b+n → {0, 1}n−1, then there exists a (t, ǫ−1/2n) atk-secure compression function CE1 : {0, 1}b+n →
{0, 1}n and an adversary A running in constant time with atk[λ]-advantage one in breaking sMD CE1

.

Proof: For any compression function G, consider CE1 given by

CE1(m‖h) = IV if h = IV

= G(m‖h) ‖ IV
(n)

otherwise .

If G is (t, ǫ) atk secure, then CE1 is (t, ǫ−1/2n) atk secure. We refer to [ANPS07] for the proof. From
the construction of CE1, it is clear that sMD CE1

(M) = IV for all M ∈ {0, 1}∗. Hence, the adversary
can output any message M ′ as its (second) preimage.

13

C Preimage and Collision Resistance of XOR-Tree

In this section we provide the Pre-security preservation and Coll-security proofs for XOR-Tree (XT)
hash. We could neither prove or disprove its Coll or Sec preservation. Below we recall the XOR-Tree
algorithm of [BR97] for variable length messages.

Algorithm XT F(K1‖ . . . ‖Kd+1 , M):
m1‖ . . . ‖mℓ ← tpad(M)
For i = 1, . . . , ad−1 do h1,j ← F(K, (m(j−1)a+1‖ . . . ‖mja)⊕K1)

For i = 2, . . . , d and j = 1, . . . , ad−i do hi,j ← F((hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki)

hd+1,1 ← F((hd,1‖〈|M |〉n(a−1))⊕Kd+1)

Return hd+1,1 .

First we provide the Pre-security preservation proof of the XT F iteration.

Theorem C.1 If F is (t′, ǫ′) Pre-secure, then XT F is (t, ǫ) Pre-secure for ǫ ≥ ǫ′ and t ≤ t′ − (ad−1
a−1 +

1) · τF, where τF is the time needed for an evaluation of F, where λ is the length of the message output
by A, and where d is the smallest integer such that ad ≥ λ.

Proof: Given an Pre[λ]-adversary A against XT F, consider the following Pre-adversary B against F.
B obtains a target value Y (computed over a random message input x = x1‖ . . . ‖xa of an-bits). B

generates at random an(d + 1)-bit keys K1‖ . . . ‖Kd+1. B runs A on the same target value Y and
generated keys to obtain A’s preimage message M ′. Let m′

1‖ . . . ‖m′
ℓ ← tpad(M ′) and let h′

d,1 be the
one-but-last output hash value computed in the execution of XT F(K1‖ . . . ‖Kd+1, M

′). Algorithm B

outputs (h′
d,1‖〈|M |〉(a−1)n)⊕Kd+1 as its own preimage. The running time of B equals that of A plus

up to 2(ad−1
a−1 + 1) compression function evaluations. Note that the number of compression function

calls (nodes) in the mXT tree equals
(

∑d−1
i=0 ai

)

+ 1 = ad−1
a−1 + 1.

Next we prove the Coll-security of the XOR-Tree hash under the two following assumptions: 1)
Coll-security of the underlying compression function F; 2) δ-Coll-security of F. For an adversary A

attacking the compression function F we define the δ-Coll advantage measure as:

Advδ-Coll
F (A) = Pr

[

δ
$
← {0, 1}n ; M ′,M

$
← A(δ) : M 6= M ′ and F(M)⊕ F(M ′) = δ

]

The δ-Coll security notions covers the intuition that no efficient adversary A should be able to out-
put two messages that have a randomly fixed XOR hash difference under F. We clarify, that the δ-Coll
and Coll-security properties are independent from each other. There exist contrived counterexamples
which show that Coll does not imply δ-Coll and vice versa.

Theorem C.2 If there exists an explicitly given adversary A that (t, ǫ)-breaks the Coll security of
mXT F, then there exists explicitly given adversaries B1 that (t′, ǫ′)-breaks the Coll security of F and

B2 that (t′′, ǫ′′)-breaks the δ-Coll security of F for ǫ ≤ ǫ′ + 2ǫ′′

(loga ℓ)2
and t′ + t′′ · τF ≤ t + 4(ad−1

a−1 + 1),

where τF is the time needed for one evaluation of F, d is the smallest integer such that ad ≥ λ, and λ
is the maximum message length.

Proof: Given a Coll-adversary A against XT F, we construct a Coll adversary B1 and a δ-Coll adversary
B2 against F.

Let us consider first B1 that generates at random the n(d+1) -bit sequence of key strings K1‖ . . . ‖Kd+1.
B1 runs A on the same key sequence to obtain a pair of colliding messages M and M ′. Let m1‖ . . . ‖mℓ ←

14

tpad(M), m′
1‖ . . . ‖m′

ℓ′ ← tpad(M ′), and let hd,1 and h′
d′,1 be the one-but-last output hash values com-

puted in the execution of XT F on inputs M and M ′ respectively.

In case |M | = |M ′| (d = d′) and (hd,1‖〈|M |〉(a−1)n) ⊕ Kd+1 6= (h′
d,1‖〈|M

′|〉(a−1)n) ⊕ Kd+1 then B1

outputs (hd,1‖〈|M |〉(a−1)n) ⊕Kd+1 and (h′
d,1‖〈|M

′|〉(a−1)n) ⊕Kd+1 as its valid colliding messages. If
these two values are equal, then B1 goes one level up to compare the inputs to F. If they are different,
then B1 outputs these as its colliding pair. Else, B1 continues as described until it reaches the top
tree level. Unless M = M ′, there always exists an index i ∈ {1, a + 1, 2a + 1, . . . , a(aloga ℓ−1 − 1) + 1},
such that at least one pair of message inputs mi‖ . . . ‖mia and m′

i‖ . . . ‖m′
ia differs and forms a valid

colliding pair for B1.

When |M | 6= |M ′| (d 6= d′), then if (hd,1‖〈|M |〉(a−1)n) ⊕ Kd+1 6= (h′
d′,1‖〈|M

′|〉(a−1)n) ⊕ Kd′+1, B1

outputs (hd,1‖〈|M |〉(a−1)n)⊕Kd+1 and (h′
d′,1‖〈|M

′|〉(a−1)n)⊕Kd′+1 as its valid colliding messages. B1

can not continue further when (hd,1‖〈|M |〉(a−1)n)⊕Kd+1 = (h′
d′,1‖〈|M

′|〉(a−1)n)⊕Kd′+1. In that case
B1 aborts.

Given the Coll adversary A against XT F, we proceed by building a new adversary B2 against the
δ-Coll-security of F. We show that B2 succeeds in these cases in which B1 aborts. B2 obtains a

random n-bit string δ and chooses δ′
$

← {0, 1}(a−1)n at random. B2 selects two indexes i and j, such

that i
$

← {1, . . . , d + 1}, and j
$

← {1, . . . , dmax + 1}\i (dmax is the maximal tree depth). B2 sets Ki,
such that Ki = (δ‖δ′)⊕Kj and generates and a random nd-bit sequence of key strings K1‖ . . . ‖Ki−1

and Ki+1‖ . . . ‖Kdmax
. Then B2 runs A on input the generated key sequence K1 . . .Kdmax+1 to obtain

colliding messages M and M ′ from A.

If |M | = |M ′|, then B2 aborts (note that B1 does always succeed in this case). Else if |M | 6= |M ′| and
(hd,1‖〈|M |〉(a−1)n) ⊕Kd+1 = (h′

d′,1‖〈|M
′|〉(a−1)n) ⊕Kd′+1, then B2 has successfully embedded a valid

key difference for Kd+1 = (δ‖δ′) ⊕ Kd′+1 (i = d + 1 and j = d′ + 1, or vice versa). In this case B2

outputs (hd−1,1‖ . . . hd−1,(a−1)n) ⊕ Kd and (h′
d′−1,1‖ . . . h′

d′−1,(a−1)n) ⊕ Kd′ as its δ-Coll colliding pair

of messages. (Note that F((hd−1,1‖ . . . hd−1,(a−1)n) ⊕Kd) ⊕ F((h′
d′−1,1‖ . . . h′

d′−1,(a−1)n) ⊕Kd′) equals

exactly δ). B2 succeeds only when the randomly selected indexes i and j equal d + 1 and d′ + 1, else
it aborts. We denote this event by E and show that the probability of event E to occur is

Pr [E] = Pr
[(

i = d + 1 ∧ j = d′ + 1
)

∨
(

j = d + 1 ∧ i = d′ + 1
)]

≤
2

(loga ℓ)2
.

If (hd,1‖〈|M |〉(a−1)n) ⊕ Kd+1 6= (h′
d′,1‖〈|M

′|〉(a−1)n) ⊕ Kd′+1, then B2 aborts (remember that in this
case B1 is successful).

We can express the advantage of A by

ǫ ≤ Pr [B1 wins ∨ (B2 wins ∧ E)]

= Pr [B1 wins] + Pr [B2 wins : E] · Pr [E]

≤ ǫ′ + Pr [B2 wins : E] ·
2

(loga ℓ)2
≤ ǫ′ +

2ǫ′′

(loga ℓ)2
.

The running times of B1 and B2 equal that of A plus at most 4ℓ evaluations of F.

15

	Introduction
	Security Definitions
	A Chaining Construction
	A Tree Construction
	Shorter Keys using Random Oracles
	Shorter Keys for Shoup's Hash
	Shorter Keys for the XOR-Tree

	Shoup Key Schedule and Random Oracles
	Merkle-Damgård does not Preserve (Second) Preimage Resistance
	Preimage and Collision Resistance of XOR-Tree

