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Abstract

Transitive signatures allow a signer to authenticate edges in a graph in such a way that
anyone, given the public key and two signatures on adjacent edges (i, j) and (j, k), can
compute a third signature on edge (i, k). A number of schemes have been proposed for
undirected graphs, but the case of directed graphs remains an open problem. At CT-RSA
2007, Yi presented a scheme for directed trees based on RSA and a standard signature
scheme. We present a new, conceptually simple, and generic construction from standard
signatures only. Apart from not relying on any RSA-related security assumptions, our scheme
outperforms that of Yi in both computation time and (worst-case) signature length. Our
results indicate that the setting envisaged by Yi is much simpler than the general one of
directed transitive signatures, which remains an open problem.

Keywords: Cryptography, transitive signatures, provable security.

1 Introduction

Transitive signatures. Imagine a signer who wants to authenticate a dynamically growing
graph by issuing signatures on edges, one edge at a time. When a third party wants to show
the existence of a path between two nodes in the graph thus constructed by the signer, he could
simply show the individual signatures on all the edges in the path. However, it would be nice if
the third party could somehow “compress” the signatures into a single one for the direct edge
between the endpoints, thereby possibly saving on bandwidth and computation time.

This is exactly the problem setting of transitive signature schemes as introduced by Mi-
cali and Rivest [MR02]. Possible applications of transitive signatures include administrative
domains (where an edge between i and j indicates that i and j are in the same domain), mili-
tary chains of command (where an edge from i to j indicates that i commands j), and secure
routing [ACdMT05]. Apart from introducing the concept, Micali and Rivest [MR02] also pre-
sented the first transitive signature scheme based on discrete logarithms and RSA. Later, Bellare
and Neven [BN02, BN05] presented more schemes based on factoring, discrete logarithms, and
pairings.

All these schemes are for undirected graphs only however, and the problem of a non-trivial
transitive signature scheme for the directed case has been open since the seminal work by Micali
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and Rivest. In fact, Hohenberger [Hoh03] even provided evidence that such schemes may be
very hard to construct, because they would imply a new mathematical structure called Abelian
trapdoor groups with infeasible inversion, of which currently no instances are known.

At CT-RSA 2007, Yi [Yi07] proposed a directed transitive scheme for the special case that
the graph being authenticated is a tree. The security of the scheme is based on an RSA-related
assumption and the security of an underlying standard signature scheme. The signatures are
not constant in size, however: they grow linearly with the number of composed edges. Yi argues
however that this growth is limited: the signature on a path of m edges in a tree of n nodes
includes two standard signatures, two RSA group elements, and an m · log(n log n) bit integer.

Our contributions. In this paper, we present a conceptually simple and generic construction
of a transitive signature scheme for directed trees from any standard signature scheme that is
more efficient than that of Yi and that does not rely on any RSA-related assumptions. Signature
verification in our scheme is computationally cheaper since it avoids all costs related to RSA
exponentiations. Edge signatures in our scheme contain two standard signatures and, in the
worst case that the tree is a linear chain, a bit string of n · log n bits. This is two RSA group
elements and n log log n bits shorter than the worst-case signature size of Yi.

We do not think the main contribution of this paper lies in the scheme itself though, but
rather in the point that the setting envisaged by Yi of directed trees with linear-size signatures
is a much simpler one than the original one intended by Micali and Rivest of arbitrary directed
graphs with constant-size signatures. In fact, our results imply that the former can be built from
any one-way function [Rom90], while the latter have been shown to require a mathematical
structure that is at least as strong as trapdoor permutations [Hoh03]. We do not think our
results make any advances towards general directed transitive signature schemes, so this should
still be considered an open problem.

Related work. Transitive signatures are a special instance of homomorphic signatures, first
introduced in a series of talks by Rivest [Riv00] and formalized by Johnson et al. [JMSW02].
Other instances of homomorphic signatures include prefix aggregation signatures [CRR02],
redactable signatures [JMSW02], set-based signatures [HM02], and verifiably encrypted sig-
natures [BGLS03].

2 Definitions

Notation. If k ∈ N is a natural number, then 1k is the bit string consisting of k ones. Let ε be
the empty string. If S is a set, then |S| is the number of elements in S. If i1, . . . , in ∈ N then
L = i1‖ . . . ‖in is the binary encoding of an ordered list of natural numbers such that i1, . . . , in
are efficiently and uniquely reconstructed from L.

If A is a deterministic algorithm, then y ← A(x) denotes that y is assigned the output of A

on input x. If A is randomized, then y
$

← A(x) denotes that y is assigned the output of A when
run with a fresh random tape. We implicitly assume that the running time of all algorithms
is polynomial in a global security parameter k ∈ N. A function ν : N → [0, 1] is said to be
negligible in k if for all c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc.

Standard signatures. A standard signature scheme is a triple of algorithms SS = (SKg,SSign,

SVf). The signer generates a key pair consisting of a public key spk and a matching private

key ssk via (spk , ssk)
$

← SKg(1k). The signer computes a signature for a message M via

σ
$

← SSign(ssk ,M). The verifier can check the validity of σ by checking that SVf(spk , σ,M)
returns 1; if the signature is invalid, it will return 0.
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The most common security notion for signatures, existential unforgeability under chosen-
message attack (uf-cma) [GMR88], is defined through the following game with an adversary
A. The adversary is given a fresh public key spk and access to a signing oracle SSign(ssk , ·).
Eventually, it outputs a message M and a forged signature σ. The advantage Advuf-cma

SS ,A (k) is
defined as the probability that A wins the game, meaning that SVf(spk , σ,M) = 1 and A never
queried M to the signing oracle. The scheme SS is said to be uf-cma secure if the advantage of
any polynomial-time adversary A is negligible.

Transitive signatures. A directed graph G = (V,E) is defined by a set of nodes V ⊂ N and
a set of edges E ⊆ V × V . If (i, j) ∈ E then we say that i is a parent of j and that j is a child
of i. A directed tree is a directed graph with one root node r ∈ V such that r has no parent
and all other nodes in V \ {r} have exactly one parent. The transitive closure of G is the graph
G̃ = (V, Ẽ) such that (i, j) ∈ Ẽ if E contains a a directed path from i to j.

A transitive signature scheme is a tuple of four polynomial-time algorithms TS = (TKg,TSign,

Comp,TVf). The signer generates a key pair via (tpk , tsk)
$

← TKg(1k), and authenticates an

edge between nodes i, j ∈ N by issuing a signature τ
$

← TSign(tsk , i, j). The signing algo-
rithm TSign may keep state between invocations. Given two signatures τ1 and τ2 on adjacent
edges (i, j) and (j, k), anyone can compute a composed signature on edge (i, k) directly as

τ3

$

← Comp(tpk , τ1, τ2). The validity of a (possibly composed) signature τ for edge (i, j) can be
checked by testing whether TVf(tpk , τ, i, j) returns 1.

Security of a transitive signature scheme is defined as follows. The adversary A is given as
input a fresh public key tpk , and is given access to a signing oracle TSign(tsk , ·, ·) from which it
can obtain signatures on directed edges of its choice. Eventually A outputs an edge (i, j) and a
forged signature τ . Let G = (V,E) be the graph defined by the signature queries of A, and let
G̃ = (V, Ẽ) be its transitive closure. The adversary wins the game if TVf(tpk , τ, i, j) = 1 and
(i, j) 6∈ Ẽ. The advantage Advtuf-cma

TS ,A (k) is the probability that A wins this game. The scheme
is said to be transitively unforgeable under chosen-message attack (tuf-cma) if this advantage
is negligible for all polynomial-time A.

In a transitive signature scheme for directed trees, the adversary is limited to signature
queries that preserve the tree structure of G.

3 Yi’s Construction

We first recall that a trivial construction of directed transitive signatures exists from any stan-
dard signature scheme [MR02]. Namely, a basic transitive signature on an edge (i, j) is simply a
standard signature on (i, j), and composition is done by concatenating signatures for the edges
in the path. This scheme is usually excluded because of its growth in signature length (linear
in the number of edges in the path) and because it reveals the creation history of the signature.

The scheme by Yi [Yi07] also has linear signature length, but its growth rate is slower than
for the trivial scheme. The basic signature for an edge (i, j) is a tuple (Li, σi, Lj, σj , δi,j), where
Li, Lj ∈ Z

∗

N for an RSA modulus N = pq, where σi and σj are standard signatures on i‖Li

and j‖Lj , respectively, and where δi,j is a small prime number such that L
δi,j

i ≡ Lj mod N .
Composition of two signatures (Li, σi, Lj , σj , δi,j) and (Lj , σj , Lk, σk, δj,k) is done by computing
δi,k ← δi,j · δj,k and returning the tuple (Li, σi, Lk, σk, δi,k). Note that the composed signature
contains only two standard signatures, but that the size of δi,k increases with each composition.
This increase can be limited by using in a tree of n nodes the smallest n prime numbers as
values for δi,j. The worst case in terms of signature length is if the tree is one long chain of n
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edges and we want to sign the endpoints of this chain. The signature will contains two elements
of Z

∗

N , two standard signatures, and one integer of approximate length n · log(n log n).
Contrarily to what is claimed in [Yi07], a composed signature does not hide its creation

history. Namely, the factorization of δi,k (which is easy to compute since it is a product of small
primes) reveals the values of δi,j and δj,k corresponding to the original edges (i, j) and (j, k).
Since in a directed tree there is at most one path from one node to another however, one could
argue that history-independence is not a very important feature here.

4 Our Construction

The scheme. The trivial scheme mentioned in the previous section has the disadvantage of
containing a linear number of standard signatures in a single transitive signature. If we only
consider the special case of a directed tree that is constructed in a top-down fashion (meaning,
the first node of the first signature issued is the root of the tree, and no incoming edges into this
node are created later on), then there exists a fairly simple scheme that contains only a single
standard signature. Namely, let the transitive signature of an edge (i, j) be a standard signature
on the path from the root down to node j. Verification involves checking the standard signature
and checking that i occurs in the path. For a tree of depth d with up to n nodes, the description
of the path takes up to d log n bits. So in the worst case that the tree is a chain of n nodes,
the length of a signature is n log n bits plus one standard signature. This is shorter signatures
than the signatures produced by Yi’s scheme, but has the disadvantage that the root of the tree
cannot change over time. We now present an extension of this scheme that does allow the root
to change, at the price of doubling the worst-case signature length.

To any standard signature scheme SS = (SKg,SSign,SVf), we associate the following transi-
tive signature scheme for directed trees TS = (TKg,TSign,Comp,TVf):

• TKg(1k): Identical to SKg, meaning that it generates a standard key pair (spk , ssk)
$

←
SKg(1k) and sets tpk ← spk , tsk ← ssk .

• TSign(tsk , i, j): The signing algorithm maintains a state consisting of the root node r, the
current tree G = (V,E), and two tables up[·] and down [·]. The signer modifies the current
state distinguishing between the following cases:

1. V = ∅ :

r ← i ; V ← V ∪ {i, j} ; E ← E ∪ {(i, j)}
up[i] = down [i] = down [j]← ε ; up[j]← i

2. i ∈ V and j 6∈ V :

V ← V ∪ {j} ; E ← E ∪ {(i, j)}
up[j]← up[i]‖i ; down [j]← ε

3. i 6∈ V and j = r :

r ← i ; V ← V ∪ {i} ; E ← E ∪ {(i, j)}
up[i]← ε ; down [i]← j‖down [j]

In all other cases the signer rejects because the query does not preserve the tree structure
of the graph. The signer sets Ci ← (i, down [i]) and Cj ← (j, up[j]), and computes two

standard signatures σi
$

← SSign(tsk , Ci) and σj
$

← SSign(tsk , Cj). The transitive signature
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on edge (i, j) is the tuple τ ← (Ci, σi, Cj , σj). We note that as an efficiency improvement,
if one of down [i] or up[j] is empty, then (Ci, σi) or (Cj , σj) can be dropped from the
transitive signature entirely.

• Comp(tpk , τ1, τ2): Parse τ1 as (Ci, σi, Cj , σj) and parse τ2 as (Cj′ , σ
′

j′ , Ck, σk). If j 6=
j′ or SVf(tpk , τ1, i, j) 6= 1 or SVf(tpk , τ2, j, k) 6= 1 then reject. Otherwise, return τ ←
(Ci, σi, Ck, σk) as the composed signature.

• TVf(tpk , τ): Parse τ as (Ci, σi, Cj, σj), parse Ci as (i, down), and parse Cj as (j, up). If
TVf(tpk , Ci, σi) = 0 or TVf(tpk , Cj , σj) = 0 then return 0. If j occurs in down , if i occurs
in up, or if there exists k that occurs in both down and up, then return 1; else return 0.

Correctness. Correctness requires that legitimate signatures verify correctly, meaning that
the verification algorithm returns 1 for signatures that were either obtained from the signer
himself or through composition of legitimate signatures. Bellare and Neven [BN02] observed
that subtleties arise in the formalization of this definition due to the statefulness of the signing
algorithm; we use here the adaptation to directed trees from [Yi07]. Rather than recalling the
formal definition and giving a full proof here, we provide some intuition into why correctness
is satisfied. Let (i∗, j∗) be the first edge signature issued by the signer. Then one can see from
the construction that all descendants j of i∗ have up[j] describing the path from i∗ to j; that
all ancestors i of i∗ have down [i] describing the path from i to i∗; and that all nodes j that are
neither descendants nor ancestors of i∗ have up[j] describing the path from the closest common
ancestor of i∗ and j to j. To show the correctness of the verification algorithm, we distinguish
between the following cases:

• Both i and j are descendants of i∗. In this case the table entry up[j] describes the path
from i∗ down to j, which must include i if there exists a path from i to j.

• Both i and j are ancestors of i∗. In this case down [i] describes the path from i down to
i∗, which must contain j if there exists a path from i to j.

• Node i is an ancestor of i∗ and j is a descendant of i∗. In this case down [i] and up[j] have
one element in common.

• Node i is an ancestor of i∗ and j is neither an ancestor nor a descendant of i∗. Let k be
the closest common ancestor of j and i∗. The entry up[j] contains the path from k down
to i. If there is a path from i to j, then i is also an ancestor of k and k occurs in down [i].
The lists down [i] and up[j] therefore have one element in common, namely k.

• Neither i nor j are ancestors or descendants of i∗. Let k be the closest common ancestor
of i∗ and i, and let k′ be that of i∗ and j. If there is a path from i to j, then it must hold
that k = k′. Therefore i is on the path from k to j, so i occurs in up[j].

From the above argumentation one can easily see that the verification algorithm returns 1 for
all legitimate signatures as required.

Security. The following relates the security of our transitive signature scheme to that of the
underlying standard signature scheme.

Theorem 4.1 Let TS be the transitive signature scheme for directed trees associated to a stan-

dard signature scheme SS as described above. If SS is uf-cma secure, then TS is tuf-cma secure.
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Proof: Given an adversary A against the transitive signature scheme TS , consider the following
adversary B against SS . On input spk , B runs A on input tpk = spk . If A queries for the
signature on an edge (i, j), then B maintains state as the real TSign algorithm would, but uses
its SSign(ssk , ·) oracle to generate the standard signatures.

When A outputs its forgery τ = (Ci, σi, Cj , σj) on edge (i, j), we distinguish between the follow-
ing cases. If either i or j are new nodes that did not yet occur in V , then either Ci or Cj was
not signed before, so B can output one of them as its own forgery. If both i and j are existing
nodes in the graph and TVf(tpk , τ, i, j) = 1 even though no path exists from i to j, then B can
extract a forgery for the standard signature scheme as follows. It first parses Ci as (i, down) and
Cj as (j, up). If j occurs in down , then certainly Ci was never signed before, so B outputs Ci, σi

as its forgery. Likewise, if i occurs up, then Cj was never signed before and B outputs Cj , σj as
its forgery. Finally, if there exists a k that occurs in both down and up, then at least one of Ci

or Cj was never signed before, so B can output the appropriate one as its own forgery. We have
that

Advuf-cma

SS ,B (k) ≥ Advtuf-cma

TS ,A (k) ,

from which the theorem follows.

Efficiency. In terms of computation our scheme is strictly cheaper than that of Yi because it
avoids all costs related to RSA operations. In particular, verification only takes two standard
signature verifications, while Yi’s scheme additionally requires a possibly expensive RSA expo-
nentiation because the exponent δi,j grows linearly with the path length and cannot be reduced
modulo ϕ(N) since this value is unknown to the verifier.

As for signature length, we already mentioned that in a tree of n nodes Yi’s scheme has a
worst-case signature length of two elements of Z∗

N , two standard signatures, and one integer of
up to n · log(n log n) bits. The worst-case length for our scheme is two standard signatures and
n integers of log n bits each, which is two RSA elements and n · log log n bits shorter than for
Yi’s scheme.

The average signature length is harder to compare, if only because it is not clear how one
would define an “average” tree. It is true that there are situations in which Yi’s signatures are
shorter than ours. Namely, in our scheme the signature on an edge (i, j) always contains the
entire path from i∗ to j. If j is only one hop away from i but far away from i∗, then this seems
an overkill, and in fact in this case Yi’s signature may be shorter than ours. On the other hand,
our scheme saves the two RSA group elements from Yi’s signatures. There is a break-even tree
depth below which our signatures are always shorter, and above which some edges in the tree
may have shorter signatures when using Yi’s scheme. Some values of this break-even depth as
a function of the number of nodes n are given in the table below for RSA moduli of 1024 and
2048 bits.

n 100 1000 106 109 1012

d1024 154 103 52 34 26
d2048 308 206 103 69 52

We stress that Yi’s signatures are certainly not guaranteed to be shorter for trees with higher
depth than mentioned in the table above. Also, disregarding efficiency considerations, our
scheme has the advantage of not relying on any other assumptions than the security of the
underlying standard signature scheme.
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5 Conclusion

We proposed a transitive signature scheme for directed trees that is conceptually simpler and
more efficient than that of Yi [Yi07], and that does not rely on any other assumptions than the
security of a standard signature scheme. Our scheme demonstrates that the setting envisaged by
Yi of directed trees with linear-length signatures is considerably easier than the open problem
mentioned by Micali and Rivest [MR02], namely that of constant-size transitive signatures for
arbitrary directed graphs. The latter therefore remains an interesting open problem.
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