
Downstream Usage Control

Laurent Bussard1, Gregory Neven2, and Franz-Stefan Preiss2

1 European Microsoft Innovation Center, Aachen, Germany
lbussard@microsoft.com

2 IBM Research – Zürich, Switzerland
{nev,frp}@zurich.ibm.com

Abstract. Whereas access control describes the conditions that have to
be fulfilled before data is released, usage control describes how the data
has to be treated after it is released. Usage control can be applied to dig-
ital rights management, where the data are usually copyright-protected
media, as well as in privacy, in which case the data are privacy-sensitive
personal information. An important aspect of usage control for privacy,
especially in light of the current trend towards composed web services
(so-called mash-ups), is downstream usage, i.e., with whom and under
which usage control restrictions data can be shared. In this work, we
present a two-sided XML-based policy language: on the one hand, it al-
lows users to express in their preferences in a fine-grained way the exact
paths that their data is allowed to follow, and the usage restrictions that
apply at each hop in the path. On the other hand, it allows data con-
sumers to express in their policies how they intend to treat the data,
with whom they intend to share it, and how the downstream consumers
intend to treat the data. Downstream usage paths can be specified up to
any desired depth, with the option to let the final usage control restric-
tions apply recursively to any further sharing of the data. Moreover, we
describe a matching algorithm by which users can efficiently test whether
all hops in a proposed policy match their own preferences, allowing them
to decide autonomously and in an automated way whether it is safe to re-
lease the requested personal information. When a match occurs, a sticky
policy is generated describing the precise rights and obligations that the
consumers have to adhere to.

1 Introduction

Many web services today are so-called service mash-ups. A mash-up is a service
that acts as a front-end for a composition of multiple subservices that are offered
by different companies. For example, a travel booking mash-up may offer an
integrated interface to book flights, hotels, and rental cars. In the background,
however, it invokes the web service APIs of different specialized airline, hotel, and
car rental subsidiaries to collect offers. The best offers are presented to the user,
who selects an offer, enters her booking and payment information, and confirms
to let the mash-up make all the bookings for her through the subsidiaries’ APIs.

Service mash-ups are important for leveraging online service APIs to create
new functionality, but pose significant privacy risks for their users. The users

2

cannot keep track of who stores what information about them, and often they
do not even know the subsidiaries their data is shared with.

To overcome this problem, service providers publish their privacy policies to
inform the users about how the gathered data is used. Human-readable privacy
policies, e.g., have the disadvantage of mostly being written in complex language
influenced by the legal profession and thus being ignored by users. Even if clear
privacy policies are presented, they often remain vague about the sharing of
information with third parties. For example, the privacy policy of Expedia.com1,
a popular online travel service, mentions the following with regard to sharing
personal information with suppliers:

We do not place limitations on our suppliers’ use or disclosure of your
other personal information [i.e., other than the email address]. There-
fore, we encourage you to review the privacy policies of any travel sup-
plier whose products you purchase through this site.

Switching to machine-interpretable privacy policy languages such as EPAL [1]
and P3P [2] is a promising approach, in particular when used in combination with
a privacy preference language such as APPEL [3]. In the latter language, users
can express how they expect their data to be treated, so that an automated
or semi-automated matching procedure can decide on the acceptability of a
proposed P3P policy.

Unfortunately, EPAL and P3P are both rather constrained in expressivity
regarding sharing personal information with third parties, or downstream usage
as we call it here. EPAL leaves the definition of specific actions and obligations
up to enterprise-defined vocabularies, and is hence silent about downstream us-
age. Support in P3P is limited to specifying which of six classes of third-party
recipients the information will be shared with; it is up to the server to classify his
recipients into one or more of the classes. SecPAL for Privacy (S4P) [4] proposes
a logic-based language to specify human readable policies and preferences. S4P
does not focus on downstream usage control and does not specify downstream
in terms of access control.

In this work, we investigate how to structure a policy language suitable for
downstream usage control. The difficulty here is that downstream usage control
involves a mixture of what is typically considered access control (who is allowed
to receive the data, e.g., by roles or owned credentials) and usage control (how
is the recipient supposed to treat the data, e.g., usage purposes or retention
period). We consider the most general setting here, where the user states in her
privacy preferences, for each hop in a chain of downstream recipients, how they
have to treat her data and to whom they can further forward it. At the same
time, each recipient specifies in his privacy policy how he intends to treat the
data and to whom he intends to forward it. We propose XML-based languages
to express both the user’s preferences and the servers’ policies, and describe
an automated matching algorithm to determine whether the proposed policies
are allowed by the specified preferences. The user and the servers can specify

1 cf. http://www.expedia.com/daily/service/privacy.asp

3

downstream usage restrictions up to any number of hops (not necessarily the
same number). Optionally, they can either specify that the last restrictions in
the chain are valid for all subsequent hops, or that after that hop no further
downstream usage is allowed. Moreover, for situations where the server does not
know at the time of data collection to whom he may forward the data, we propose
an alternative matching algorithm at which a server declares his willingness to
impose any restrictions on further downstream usage that the user may specify.

This work relies on the trust model of P3P and EPAL: each service is willing
to enforce its privacy policy. Authors assume that service providers are appropri-
ately enforcing their policies to protect their reputation and/or that services are
regularly audited and certified by trusted third parties. Proving the correctness
of policy enforcement, for instance using a trusted stack (certified TPM, trusted
OS, and trusted application), is out of the scope of this paper.

2 Related Work and Contributions

Our work is closely related to rights expression languages (RELs), privacy policy
languages, and usage control. We give a brief overview of each of these lines of
work and how they relate to the language we propose.

2.1 Rights Expression Languages

From a protocol point of view, there is a clear difference between privacy policies
on the one hand, and digital right management (DRM) and enterprize right
management (ERM) on the other hand. Indeed, in privacy, it is usually the
consumer (data controller) who imposes the policy, while in right management,
the author (or publisher) imposes the policy (license) to the consumer. The
main purpose of matching is to help the end-user deciding whether he accepts
the service and the policy. Such matching is interesting to make decisions related
to privacy or to rights management and, in both case, is generally done by the
user.

From a trust model point of view, privacy policies and enterprize right man-
agement are similar because they assume “honest consumers”, data controller
and consumer respectively, which are willing to enforce the policy (accept audit,
use required client application, etc.). In digital right management, the threat
model is different since consumers may mount attacks in order to violate the
policy. As a result, trusted hardware and/or software are required in DRM.

There are three key differences between our approach and state of the art
right expression languages used in ERM and DRM, e.g., MPEG-21 REL [5],
XrML [6], and ODRL [7]:

– RELs focus on rights (e.g. print, play) and add some conditions and con-
strains (temporal, fees, device, etc.) but obligations remain underspecified.

– Matching is generally not specified even if automating the process of accept-
ing an offer, i.e. a proposed license, would make sense.

4

– Downstream data sharing (transfer, i.e. sell, give, lease) is also defined as a
right. However, it is not as expressive as our model and does not result in a
matching algorithm.

The most important difference between right management and our work is
the fact that in the former the data provider pushes sticky policies (i.e., licenses)
onto the consumer without matching. In a privacy setting, the provider (i.e.,
user) usually does not have this power. Rather, it is the consumer who imposes
a policy onto the provider.

Another major difference is that the domain-specific vocabulary is quite dif-
ferent for RELs and for privacy policies, even though overlaps exist, e.g., the
obligation to delete data within a certain time makes sense in both domains.
Apart from the vocabulary though, the same overall language structure should
be usable for both.

2.2 Privacy Policy Languages

We already briefly discussed how the privacy policy languages such as EPAL [1],
P3P [2], and APPEL [3] fall short in terms of expressing restrictions on the down-
stream usage. EPAL is mainly intended for writing enterprize-internal privacy
policies to govern data handling practices. P3P, on the other hand, is mainly in-
tended for websites to communicate their privacy practices to the outside world.
APPEL is a preference language for P3P, i.e., enabling users to specify their pri-
vacy preferences and automatically match those against proposed P3P policies.

SecPAL for Privacy (S4P) [4] is a logic-based language to specify privacy
policies and preferences. S4P specifies preferences as may assertions (i.e. autho-
rizations) and will queries (i.e. obligation request). S4P specifies policies as will
assertions (i.e. commitment on obligations) and may queries (i.e. authorization
request). In S4P, matching is about evaluating queries with a set of assertions
while, in the work presented in this document, matching is done by comparing
statements.

Ardagna et al. [8] describe a data handling policy language that allows
for specifying data recipients, usage purposes and obligations. In the proposed
model, service providers present policy templates to users that the users may
customize on the base of their own data handling policies. The outcome of a
successful customization is a policy traveling with the data. The customization
process is described as potentially automated, it remains unclear though how
this automation can be achieved. In particular, because neither an obligation
vocabulary nor matching semantics for purposes and obligations are defined.
The authors do not distinguish between rights and obligations. Their purpose
can be seen as dedicated right, however, there is no explicit right to share data
downstream. The data recipient concept allows for specifying global rules on who
may receive the data, and could therefore be seen as abstract downstream right.
However, transitive downstream data disclosures are not explicitly discussed and
specific paths along which data may be shared cannot be expressed.

5

2.3 Usage Control

Usage control [9, 10] is a generalization of access control that is also concerned
with how data is treated after it has been given away. In contrast, pure access
control only addresses how data is protected before it is released.

Usage control distinguishes between two kinds of requirements: provisions
that state access control requirements and have to be fulfilled before access is
granted, and obligations that state usage control requirements and are concerned
with the future usage of data [10]. In obligations one further differentiates be-
tween rights (also called permissions) and duties, and specify constraints mainly
related to time, cardinality, purpose, and events. What we call rights and obli-
gations in this work can be seen as the equivalent of rights and duties in the
usage control literature.

Usage control takes place in a distributed setting where a process acting
in the role of a data provider sends sensitive data to a process acting in the
role of a data consumer based on provisions and obligations. Access and usage
control requirements are stated in usage control policies. For expressing such
policies, several specification languages have been developed [8,11,12], however,
the policies of Leumann [12] come closest to our approach. They are expressed
by a number of rules whereby a rule specifies its applicability, provisional actions
and obligations. They additionally contain optional actions and contracts, which
reflect the obligations, and are expressed in XACML.

The concept of policy evolution for distributed usage control as proposed
by Pretschner et al. [13] bears similarities to our concept of downstream usage
control. Here, The roles of data provider and data consumer change dynamically
with each transfer: a consumer becomes provider if data is forwarded that was
received before. The Obligation Specification Language (OSL) proposed in [13]
allows the data provider to specify which consumers (indicated by their roles)
have to adhere to which rights and duties when receiving the data. The language
is logic-based, so that a sequence of events can automatically be checked for
compliance with the specified policy.

The language we propose differs from OSL in two important aspects. First,
we envision a double-sided setting where both the data consumer and the data
provider have policies (resp., preferences) describing how they will treat the
data (resp., want the data to be treated). These policies and preferences are
then automatically matched to yield a sticky policy that acts as the agreed-
upon contract. In the OSL, it is the data provider who unilaterally describes the
sticky policy that has to be adhered to, which we think is especially unrealistic in
privacy, where the data provider is a private user. Second, our language is more
expressive than OSL in that it can describe (and automatically match) the full
path that the data is allowed to follow, including who is allowed to share the data
with whom, and how many hops the data is allowed to take. In contrast, in OSL
one can specify which role of consumers have to adhere to which usage control
policy. For example, in our language a patient could impose one usage control
policy when a health insurance company obtains her medical record through the

6

hospital, and another policy when it obtains from the patient directly. In OSL
both cases would have to be treated the same.

3 Description of Solution

In this chapter, we present XML-based languages for the providers’ preferences
and the consumers’ policies in which they can express their precise downstream
usage control restrictions. We illustrate our languages with the following example
scenario.

3.1 Example Scenario

Alice is a privacy-aware user who regularly shops online, but who is concerned
about what happens to the data that she provides about herself. For example,
she’s willing to provide her postal address to online shops so that the goods can
be delivered, but she realizes that most shops rely on external shipping com-
panies. She wants to impose a detailed set of usage control preferences though,
where the restrictions on the shipping company depend on who the front-end
service is from which it obtained the address. Namely, when obtained through a
book shop, she is fine with the shipping company using her address for statistics,
but when obtained through any other store, which may include liquor or lingerie
stores, she is not. More precisely, she wants to enforce the following preferences:

– Book shops can collect her address for the purpose of statistics, contact, and
account administration. They must delete it after two years and are allowed
to forward to shipping companies who can use it for shipping and statistics,
have to delete it after two weeks, and can further forward it to shipping
companies under the same restrictions.

– Any shop can collect her address for the purpose of account administration
provided they delete it within one year. They can further forward it to ship-
ping companies who can use it for shipping only, have to delete it after two
weeks, and are not allowed to share the data with anyone.

Alice regularly buys books at the online book shop bookshop.com because
its privacy policy matches her preferences. Namely, bookshop.com states that it
will

– use her address for statistics and account administration, that it will delete
the address after one year, and that it will forward the address only to
shipping.com.

The policy of shipping.com states that

– the address will be used for shipping and statistical purposes, and will be
deleted after one week.

7

When buying a book at bookshop.com, Alice can safely give her address
away since bookshop.com’s and shipping.com’s privacy policies match her own
preferences. However, when buying a bottle of wine at liquor.com, who also use
shipping.com for shipping, the transaction will be refused, as Alice’s preferences
in this case do not allow shipping.com to use her address for statistical analysis.

3.2 Language Model

The abstract scenario we consider is one where two parties, typically a user and
a server, engage in an interaction where one of the parties, typically the server,
requests some personally identifiable information (PII) from the other party. We
will from now on call the party that provides the data the data provider and
the party that requests the data the data consumer. Moreover, we consider a
scenario where at a later point in time, the data consumer may want to forward
the PII to a third party, called the downstream data consumer.

Both the data provider and the data consumer have their own policies ex-
pressing the required and proposed treatment of the PII, respectively. These
policies contain access control and usage control policies. A piece of PII is only
sent to a data consumer after (1) the access control requirements have been met,
and (2) a suitable usage control policy has been agreed upon.

We distinguish three kinds of policies:

Preferences: In his preferences the data provider describes, for specific pieces
of PII, which access control requirements a data consumer has to satisfy in
order to obtain the PII, as well as the usage control requirements according
to which the PII has to be treated after transmission. These requirements
may include downstream usage requirements, meaning the requirements that
a downstream data consumer has to fulfill in order to obtain the PII from
the (primary) data consumer.

Policy: The policy is the data consumer’s counterpart of the data controller’s
preferences. In a policy the data consumer contains, for specific pieces of
PII to be obtained, his certified properties (roles, certificates, etc.) that can
be used to fulfill access control requirements, and a usage control policy
describing how he intends to use the PII.

Sticky policy: The sticky policy describes the mutual agreement concerning
the usage of a transmitted piece of PII. This agreement is the result of a
matching process between a data providers’s preferences and a data con-
sumer’s policy. Technically a sticky policy is quite similar to preferences
as described above, but it describes a mutual agreement between the data
provider and the data consumer that cannot be changed. After receiving the
PII, the data consumer is responsible for storing and enforcing the sticky
policy.

To illustrate our ideas we employ a simple XML-based language to express
preferences, policies, and sticky policies. In the following we first introduce our
language and then focus on how to express downstream usage requirements.
Note that we provide the full language schemas in Appendix B.

8

Preferences model Figure 1 shows Alice’s preferences for book shops ex-
pressed in our policy language. Figure 2 gives a graphical representation of the
language schema for the preferences ; the full schema is given in Appendix B.The
Preferences root element contains multiple Preference elements, each describ-
ing to which PII it applies and what the respective access and usage controls
are. An attribute sticky indicates whether these preferences are in fact a sticky
policy for the PII (cf. 3.2), acting as an explicit reminder that they cannot be
changed. Alternatively, one could keep all sticky policies separately in a read-only
policy store.

A Preference can refer to the applicable PII by their data type, meaning
that the Preference applies to all PII of this type, or by a unique identifier
pointing to a single instance of PII. We assume that a typing mechanism and
unique naming scheme for PII are in place. A complete language would probably
offer more powerful mechanisms to specify applicability, allowing for example
attribute expressions or temporal constraints.

Our language is strictly limited to positive statements, in the sense that
it explicitly lists the permitted information exchanges, and assumes that all
other exchanges are forbidden. Apart from this being a safe privacy-conservative
choice, it also simplifies the matching procedure. However, it means that one
cannot express conditions of the form “do not forward to X” or “do not use for
purpose Y”.

If multiple Preference elements apply to a single piece of PII, then satisfying
the conditions in either of them results in a match. In other words, Preferences
are combined according to “or” semantics. This makes it possible to define more
permissive exceptions to general preferences.

Within a Preference, access and usage control requirements occur in a pair
enclosed in an ACUC element. A pair (AC,UC) means that any data consumer
satisfying access requirements AC can obtain the PII when adhering to usage
requirements UC. To allow multiple AC/UC combinations for a single piece of
PII, one can use multiple Preference elements with the same Applicability.

An optional attribute id assigns a unique identifier to an ACUC pair. This
identifier can be referred to from another ACUC element via a reference at-
tribute. The referring element is then interpreted as if it was substituted with
the referred element.

Access control requirements are expressed in terms of Rules where each rule
specifies a property that a data consumer must have in order to be granted
access. Properties are stated in terms of attributes as certified by some certifica-
tion authority (CA). Empty access control requirements mean that anybody who
commits to fulfilling the usage control requirements is granted access. The simple
access control language that we use here could in a real system, e.g., be substi-
tuted with a complete role-based [14], attribute-based [15,16], or logic-based [17]
access control language.

Usage control requirements are expressed by distinguishing between Rights

and Obligations. A right states an action that the data consumer is allowed
to perform on the data, but doesn’t have to perform to comply with the policy.

9

1 <Preferences>

2 <Preference>

3 <Applicability>

4 <DataType> Address </DataType>

5 </Applicability>

6 <ACUC>

7 <AccessControl>

8 <Rule>CertifiedAsBy{bookshop, CAx}</Rule>

9 </AccessControl>

10 <UsageControl>

11 <Rights>

12 <UseDownstream allowLazy="false">

13 <ACUC id="ACUCshipping@alice">

14 <AccessControl>

15 <Rule>CertifiedAsBy{shipping, CAy}</Rule>

16 </AccessControl>

17 <UsageControl>

18 <Rights>

19 <UseDownstream allowLazy="false">

20 <ACUC reference="ACUCshipping@alice"/>

21 </UseDownstream>

22 <UseForPurpose>statistics</UseForPurpose>

23 <UseForPurpose>shipping</UseForPurpose>

24 </Rights>

25 <Obligations>

26 <DeleteWithin>P14D</DeleteWithin>

27 </Obligations>

28 </UsageControl>

29 </ACUC>

30 </UseDownstream>

31 <UseForPurpose>statistics</UseForPurpose>

32 <UseForPurpose>contact</UseForPurpose>

33 <UseForPurpose>accountadmin</UseForPurpose>

34 </Rights>

35 <Obligations>

36 <DeleteWithin>P2Y</DeleteWithin>

37 </Obligations>

38 </UsageControl>

39 </ACUC>

40 </Preference>

41 ...

42 </Preferences>

Fig. 1. Excerpt from Alice’s preferences.

10

Fig. 2. Preferences and sticky policy language model

An obligation states an action that a data consumer is obliged to perform. We
model two types of rights and two types of obligations here:

– UseDownstream: The right to forward the PII under given conditions to
further data consumers. This is a crucial element in our policy language; we
come back to its exact structure and meaning later.

– UseForPurpose: The right to use the PII for a specific purpose.

– DeleteWithin: The obligation to delete the PII within a given amount of
time.

– NotifyOnAccess: The obligation to notify the user when the PII is accessed.

The complete language supports more rights and obligations, however, those four
suffice to illustrate the ideas of this work. Empty usage control requirements
mean that the data consumer is not allowed to store the PII at all. Multiple
rights and obligations within a UsageControl element are combined by “and”
semantics, meaning that the data consumer obtains all the specified rights and
has to adhere to all of the specified obligations.

Policy model A data consumer’s policy states which usage control require-
ments he is willing to adhere to when requesting a specific resource from a data
provider. In addition the policy states the properties the data consumer is willing
to disclose for fulfilling the data provider’s access control rules for that resource.

Figure 5 shows the language schema of the server policy, which is obviously
similar to that of the preferences. (The full schema is given in Appendix B.) The
main difference is in the AccessControl element, which instead of access require-
ment rules now contains the properties that the data consumer can demonstrate
to the data provider. To avoid having to repeat the same properties in multiple
Policy elements, yet preserve the flexibility to use different properties for dif-
ferent types of PII, the server one can use the id attribute to assign a unique

11

identifier to an AccessControl element, so that it can be referred to from an-
other AccessControl element using the reference attribute. In the following
we provide example policies for the book shop and the shipping company.

The shop’s policy stated in Figure 3 expresses that for collecting addresses,
it is willing to authenticate as a shop or a book shop certified by CAx, and as
bookshop.com certified by CAz. The address will be deleted after one year and
used for statistics and account administration. Further, the shop wants to be
able to forward it under the policy of the shipping company (that is specified
below).

1 <Policies id="Policies@Shop">

2 <Policy>

3 <Applicability>

4 <DataType> Address </DataType> </Applicability>

5 <ACUC id="ACUCaddress@Shop">

6 <AccessControl>

7 <Property>CertifiedAsBy{bookshop, CAx}</Property>

8 <Property>CertifiedAsBy{shop, CAx}</Property>

9 <Property>CertifiedAsBy{bookshop.com, CAz}</Property>

10 </AccessControl>

11 <UsageControl>

12 <Rights>

13 <UseDownstream allowLazy="false">

14 <ACUC reference="ACUCaddress@Shipping"/>

15 </UseDownstream>

16 <UseForPurpose>statistics</UseForPurpose>

17 <UseForPurpose>accountadmin</UseForPurpose>

18 </Rights>

19 <Obligations>

20 <DeleteWithin>P1Y</DeleteWithin>

21 </Obligations>

22 </UsageControl>

23 </ACUC>

24 </Policy>

25 ...

26 </Policies>

Fig. 3. Excerpt from bookshop.com’s policies.

Figure 4 depicts shipping.com’s relevant policies. When collecting addresses,
it is willing to authenticate as a shipping company certified by CAy and as
shipping.com certified by CAz. It intends to use the address for shipping and
statistical purposes and will delete it within one week.

Sticky policy model Sticky policies follow the same schema as preferences,
but have the sticky attribute in the Preference element set to true. This is to

12

1 <Policies id="Policies@Shipping">

2 <Policy>

3 <Applicability>

4 <DataType> Address </DataType> </Applicability>

5 <ACUC id="ACUCaddress@Shipping">

6 <AccessControl>

7 <Property>CertifiedAsBy{shipping,CAy}</Property>

8 <Property>CertifiedAsBy{shipping.com,CAz}</Property>

9 </AccessControl>

10 <UsageControl>

11 <Rights>

12 <UseForPurpose>shipping</UseForPurpose>

13 <UseForPurpose>statistics</UseForPurpose>

14 </Rights>

15 <Obligations>

16 <DeleteWithin>P7D</DeleteWithin>

17 </Obligations>

18 </UsageControl>

19 </ACUC>

20 </Policy>

21 ...

22 </Policies>

Fig. 4. Excerpt from shipping.com’s policies.

indicate that this sticky policy originates from another party and must thus not
be modified. Note that a data consumer may, in addition to the sticky policy, also
have own preferences for forwarding previously received PII. Those preferences
can, however, be changed and are therefore not sticky.

3.3 Downstream usage

The crucial aspect of our policy language is that it allows both the data provider
and the data consumer to express to whom and under what conditions PII can or
will be forwarded. These conditions are expressed in UseDownstream elements.

We first focus on UseDownstream elements occurring in the data provider’s
preferences. Each UseDownstream element contains exactly one ACUC child ele-
ment. This ACUC element either contains a fully specified pair of access and usage
control requirements, or another ACUC element is referenced with the reference

attribute.
In the former case, the access control requirements specify to which down-

stream data consumers the PII can be forwarded, while the usage control re-
quirements specify how these downstream consumers are supposed to treat it.
Usage requirements can on their turn also contain UseDownstream elements that
specify to whom and under what conditions the downstream consumer can fur-
ther forward the PII, which on their turn can contain UseDownstream elements

13

Fig. 5. Server-policy language model.

as well, etc. This mechanism enables the data provider to restrict the forwarding
of his PII up to an arbitrary number of “hops”. We refer to this approach as
nested downstream usage control.

In the case where an ACUC element references the content of another ACUC

element, for the sake of simplicity we insist that it can only refer to its closest
ancestor ACUC element, i.e., the ancestor four levels higher in the XML tree. (We
impose this restriction since it simplifies the matching procedure and there seem
to be no convincing use cases for “cyclically recursive” policies with cycle length
greater than one.) This means that the data consumer can then forward the
PII under the same restrictions that were imposed on himself. We therefore call
this approach recursive usage control. Note that our policy language allows to
combine nested and recursive usage control by defining a chain of nested usage
controls for the first number of hops and a final recursive usage control for any
further hops.

In a data consumer’s policy, each UseDownstream element contains at most
one ACUC element. If present, it contains a set of properties describing to whom he
plans to forward the PII, and a usage control policy describing how that down-
stream consumer will treat the data. This usage control policy could contain
further UseDownstream elements, describing the next hops up to an arbitrary
nesting degree. Alternatively, the reference attribute can be used to point to
another ACUC element. This element may even be hosted directly by a down-
stream consumer (where we assume the reference to act as a URL).

In many situations, the downstream consumer or his policy are not be known
at the time the PII is transmitted to the primary consumer. Rather than spec-
ifying all intended hops in full detail, the data consumer can indicate his will-
ingness to enforce any restrictions imposed by the data provider by setting the
allowLazy attribute of the UseDownstream element to true and omitting the

14

ACUC element. The matching between the data provider’s preferences and the
downstream consumer’s policy is then done by the primary consumer at the
time the PII is forwarded to the downstream consumer. We refer to the next
section for more details on lazy matching. When the allowLazy attribute occurs
in Preferences, it indicates whether the data provider allows the restrictions
expressed in the child ACUC element to be matched lazily.

Finally, in the UseDownstream element a maxDepth attribute can be set to an
integer or to unbounded to indicate how often a piece of PII can be forwarded
at most. The intended behavior concerning this limit can be explained with
a counter contained in sticky policies. The counter in a sticky policy that is
attached to forwarded PII is decreased by one w.r.t. the previous sticky policy
or w.r.t. maxDepth in case the PII is forwarded by the primary data provider.

3.4 To compose or not to compose.

To guarantee efficient matching of preferences and policies, our matching proce-
dure sees UsageControl elements as monolithic blocks, and does not try to com-
pose multiple UsageControl blocks when all of the corresponding AccessControl

requirements are satisfied. For example, imagine that on top of the preferences
described in Figure 1, Alice has a preference saying that electronics stores are
allowed to use her address for marketing, as depicted in Figure 6. Suppose that

1 <Preference>

2 <Applicability>

3 <DataType> Address </DataType>

4 </Applicability>

5 <ACUC id="ACUCelshop@alice">

6 <AccessControl>

7 <Rule>CertifiedAsBy{electronicsshop,CAx}</Rule>

8 </AccessControl>

9 <UsageControl>

10 <Rights>

11 <UseForPurpose>marketing</UseForPurpose>

12 </Rights>

13 </UsageControl>

14 </ACUC>

15 </Preference>

Fig. 6. Additions to Alice’s preferences from Figure 1.

Alice visits BEshop.com which is at the same time a book and electronics shop
(and has the necessary credentials to prove this) and asks for Alice’s address
under the policy depicted in Figure 7 which says that she’ll use her address for
statistics, account administration, and marketing, and will delete it within one
year.

15

1 <Policies id="Policies@BEshop">

2 <Policy>

3 <Applicability> <DataType> Address </DataType> </Applicability>

4 <ACUC id="ACUCaddress@BEshop">

5 <AccessControl>

6 <Property>CertifiedAsBy{bookshop,CAx}</Property>

7 <Property>CertifiedAsBy{electronicsshop,CAx}</Property>

8 <Property>CertifiedAsBy{shop,CAx}</Property>

9 <Property>CertifiedAsBy{BEshop.com,CAz}</Property>

10 </AccessControl>

11 <UsageControl>

12 <Rights>

13 <UseForPurpose>statistics</UseForPurpose>

14 <UseForPurpose>accountadmin</UseForPurpose>

15 <UseForPurpose>marketing</UseForPurpose>

16 </Rights>

17 <Obligations>

18 <DeleteWithin>P1Y</DeleteWithin>

19 </Obligations>

20 </UsageControl>

21 </ACUC>

22 </Policy>

23 </Policies>

Fig. 7. Excerpt from BEshop.com’s policies.

16

Intuitively, one may expect this policy to match the preferences, as the shop
obtains the right to use the address for statistics and accountadmin based on
its role as a bookshop, the right to use it for marketing based on its role as an
electronics shop, and it adheres to the restriction of line 36 in Figure 1 to delete
it within two years. Nonetheless, by our definition of matching the ACUC element
ACUCaddress@BEshop in Figure 7 does matches neither the ACUCbookshop@alice
element in Figure 1 nor the ACUCelshop@alice element in Figure 6 separately,
so matching fails.

For a match to be found, the matching algorithm would have to be intelli-
gent enough to “combine” rights and obligations from different UsageControl

elements. Moreover, it would have to compute this combination for every possible
subset of the UsageControl elements for which the corresponding AccessControl

is satisfied. This causes an exponential blowup of the number of matchings to
be performed, which of course we prefer to avoid.

Instead, we match ACUC elements atomically, and leave it either up to the
data provider to explicitly add an ACUC element describing the case of combined
book and electronics shops, or up to the shop to make two separate requests for
Alice’s address, once in its capacity of a book shop, and once in its capacity of
an electronics shop.

4 Matching

Given a data provider’s preferences and a consumer’s policies, matching aims at
automating the process of deciding whether the provider can safely transmit a
piece of personal data. We introduce a ’more or equally permissive than’ operator
to match preferences with policies. We say there is a match when the preferences
are more or equally permissive than the policy.

4.1 Matching Privacy Preferences and Policies

To explain the matching procedure, we use a set-based representation of the
XML structure described in the previous section. A Preferences element is
represented by a set Prefs containing an element Pref ∈ Prefs for each of its
Preference child elements in the XML structure. Pref .App represents a set
containing all the PII owned by the user that is covered by the Applicability

element, and Pref .ACUC designates the contained ACUC child elements. The
set ACUC .AC is the set of access control rules (e.g., CertAsBy) contained in
the Rule elements of the embedded AccessControl, while ACUC .UC is the
set of usage controls in terms of rights (UC.Rights) and obligations (UC .Obls),
specified by the Rights and Obligations elements, respectively. We use an
analogous notation for the consumers’ policies.

Intuitively, preferences Prefs are more or equally permissive than policies
Pols, denoted Prefs � Pols, if the access control properties in Pols satisfy the
rules in Prefs and if Pols asks for less rights and promises to adhere to stricter

17

obligations than specified in Prefs. We “overload” the notation of the � oper-
ator to compare not only preferences with policies, but also to compare rights,
obligations, access control policies as well as usage control policies.

Matching of preferences and policies boils down to the matching of individual
rights and obligations. To determine if there is a match between preferences Prefs
and policies2 Pols, it is verified if for each ACUC pair in a policy the user has a
corresponding piece of PII with a more or equally permissive ACUC pair:

Prefs � Pols ⇔ ∀Pol ∈ Pols · ∃Pref ∈ Prefs · ∃PII ∈ PIIs ·
PII ∈ (Pol .App ∩ Pref .App) · Pref .ACUC � Pol .ACUC (1)

Above, PIIs is the set of all pieces of personal information that the user possesses,
and PII can be any specific piece of PII in that set. In the following, we use
the notations ∗Pref and ∗Pol to denote elements within preferences and policies
respectively.

Pairs of access control and usage control policies are matched as follows:

ACUCPref �ACUCPol ⇔ (ACUCPref .AC �ACUCPol .AC) ∧
(ACUCPref .UC �ACUCPol .UC) (2)

Note that (2) is evaluated multiple times during the evaluation of (1). For ex-
ample, ACUCPol is instantiated subsequently with Pol i.ACUC for all Pol i in
Pols. The access control mechanism we employ is based on certified properties
such as roles or IDs. To match access control requirements, it is verified if for
each Rule in the preferences there is a corresponding Property in the policy:

ACPref �ACPol ⇔ ∀r ∈ ACPref · ∃r′ ∈ ACPol · r = r′ (3)

This could be extended to cover more sophisticated access control mechanisms
such as claim-based access control or hierarchical roles. However, the matching
becomes more complex when doing so (e.g., as environment attributes such as
time of day cannot be pre-evaluated). Usage control requirements are matched
as follows:

UCPref �UCPol ⇔
(∀R ∈ UCPol .Rights · ∃R′ ∈ UCPref .Rights ·R′ �R) ∧
(∀O ∈ UCPref .Obls · ∃O′ ∈ UCPol .Obls ·O �O′) (4)

The matching of rights and obligations is specified for the different types of
rights and obligations individually. In the following we give example specifica-
tions for the ones introduced in Section 3.2 (cf. [18] for more complex examples).

2 Note that policies Pols are not complete privacy policies of a website but rather
policies of specific inputs in a Web form or policies of credential attributes required
to authenticate.

18

If obligations R and R′ specify that the user must be notified when her PII is ac-
cessed, R′�R is evaluated with the appropriate � operator, i.e., (6) in this case.
Letting obligation DeleteWithin with duration t be denoted as DelWithin(t),
matching is done as follows:

DelWithin(t) �DelWithin(t′) ⇔ t ≥ t′ . (5)

Letting obligation NotifyOnAccess with contact information c be denoted as
NotifyOnAcc(c), matching is done as follows (where ∗ represents any string):

NotifyOnAcc(c) �NotifyOnAcc(c′) ⇔ c′ = ∗ ∨ c = c′ . (6)

Letting right UseForPurpose with purpose p be denoted as UseForPurp(p),
matching is done as follows:

UseForPurp(p) �UseForPurp(p′) ⇔ p = p′ (7)

For the sake of readability, support for hierarchical purposes is not described
here.

As downstream usage is the focus of this paper, the following two subsections
explain the details of the matching procedure for downstream usage rights.

4.2 Proactive Matching of Downstream Rights

Supporting nested and recursive ACUC (access control and usage control) has
an impact on matching. This section provides the intuition behind proactively
matching a downstream structure, i.e., matching structures where both the pref-
erences and the full chain of downstream usage policies are known at the time
of matching.

For a given pair ACUC , let |ACUC | be the “local” ACUC, meaning contain-
ing only those restrictions and obligations that do not affect downstream usage,
meaning

|ACUC |.AC = ACUC .AC

|ACUC |.UC .Obls = ACUC .UC .Obls

|ACUC |.UC .Rights = {R ∈ ACUC .UC .Rights : R 6= UseDS (·, ·)}

We define the right of sharing downstream as UseDS (·, ·). Using this notation,
we can represent the structure of an ACUC policy with downstream usage as
a directed graph where each node represents a hop in the downstream usage.
Each node is labeled with the local ACUC policy describing how the data are to
be treated locally. Each edge represents the permission (in case of a provider’s
preferences) or intention (in case of a consumer’s policy) to forward the data
under the restrictions specified by the ACUC of the endpoint of the edge. For

19

instance, the case where ACUCA permits the right to share downstream under
ACUCB , but prohibits any further forwarding is depicted in Figure 8(a).

By the restrictions that we imposed on the connection among ACUC pairs,
the structure of the graph is similar to that of a tree where the leaf nodes can
optionally have a loop, representing recursion in the downstream usage policy.
Figure 8(b) for example represents a simple recursive ACUC. Figure 8(c) is an
example with two downstream ACUC policies. Figure 8(d) shows a deeper nested
structure. Nodes in the graph can have multiple incident edges if multiple ACUCs

|ACUCA| |ACUCB|1

(a) Nested ACUC

∞|ACUCE|

(b) Recursive ACUC

|ACUCC|
|ACUCB|1

1 |ACUCD|

(c) ACUC with multiple downstream

|ACUCF|
|ACUCA|1

1 |ACUCE| ∞

|ACUCB|1 1

(d) Deeper ACUC

Fig. 8. Examples of ACUC chaining

refer to it as part of their downstream rights. Figure 9(d) is correct for example,
as by “doubling” node ACUC 4 it could be split into two separate trees rooted
at ACUC1 and ACUC5. Figure 9(a) is not correct however because it contains a
cycle: for the sake of readability and to avoid over-complex matching, cycles are
forbidden. Figure 9(b) is not correct because only leaf nodes can be recursive.
Figure 9(c) is not correct because nested downstream rights must have a depth
equal to one. Intuitively, matching two ACUC pairs ACUCPref taken from a

|ACUC8| |ACUC9|1

1

(a) Incorrect ACUC (loop)

∞
|ACUC10| |ACUC11|1

(b) Incorrect ACUC (recursive)

|ACUC12| |ACUC13|2

(c) Incorrect ACUC (nested 6= 1)

|ACUC1|
|ACUC2|1

1 |ACUC4| ∞

|ACUC3|1

|ACUC5|
1

|ACUC6| |ACUC7|11

(d) Correct ACUC

Fig. 9. Correct and incorrect chaining of ACUC

provider’s preferences and ACUCPol specified in a consumer’s policy is done by

20

simultaneously going over the nodes in the two tree representations of ACUCPref

and ACUCPol and verifying that it is possible to cover each branch of the policy-
side tree with a more or equally permissive branch on the preference side. For
instance, if |ACUCE | � |ACUCA| and |ACUCE | � |ACUCB | in Figures 8(b)
and 8(a), then ACUCE � ACUCA. However, it is impossible that ACUCA �

ACUCE because ACUCE allows deeper downstream usage than ACUCA.
Letting UseDS (ACUC) denote a UseDownstream element with an ACUC child

element represented by ACUC , the matching for downstream usage rights works
according to the rule:

UseDS (ACUC) �UseDS (ACUC ′) ⇔ ACUC �ACUC ′ (8)

We assume that an ACUC specifying recursive downstream sharing right with
depth d is “folded out” into a graph of d + 1 nested ACUC. Formula (8) is thus
sufficient to handle nested as well as recursive access and usage control. Ob-
viously, to improve performance when matching recursive ACUC and to avoid
infinite loops in case of unlimited recursion depth, the concrete implementation
of the matching algorithm must keep track of which combinations of ACUC el-
ements have already been matched against one another and must take depth
into account. We refer to Appendix A for a complete example of a proactive
matching process.

4.3 Lazy Matching

In the previous section we focused on proactive matching, i.e., matching where all
downstream policies are known beforehand. It is, however, not always possible
to collect all policies during matching. For this reason, we also introduce lazy
matching, which only takes into account the properties and policies of the data
consumer, but not those of any downstream data consumers. Rather, the data
consumer expresses that he is willing to impose whatever usage restrictions on
downstream consumers that the data provider may specify.

Both types of matching imply that the sticky policy that the data consumer
associates to the data must at least enforce the preferences of the data provider.
On one hand, proactive matching allows to minimize the rights and maximize
the obligations that are transferred as the matching procedure can already take
the downstream consumers and their policies into account. On the other hand,
lazy matching offers more flexibility and is the only option in dynamic settings,
where either the downstream consumers or their policies are not known yet at the
moment of matching, or where the access control policy depends on environment
variables that will only be known when the data is actually forwarded.

Obviously, when all necessary information is available at the time of match-
ing, proactive matching is preferable from a privacy perspective as it minimizes
the rights that the provider has to give away. On the other hand, if the down-
stream consumers’ policies change between the moment of matching and the
actual moment of forwarding, then the transaction may fail even though the

21

new policy is still in accordance with the provider’s preferences, but not with
the (stricter) sticky policy that resulted earlier from the matching. Depending on
the type of application, this type of failure may be acceptable or even recoverable
by contacting the data subject to ask for additional rights.

To support lazy matching, we redefine formula (8) to take the allowLazy at-
tribute into account, which is represented by a boolean value lazy here. Matching
for downstream usage then follows the rule:

UseDS (lazy ,ACUC) �UseDS (lazy ′,ACUC ′) ⇔
(lazy ∧ lazy ′) ∨ (ACUC �ACUC ′) (9)

4.4 Creating Sticky Policies

A sticky policy specifies the commitment of the data consumer towards the data
provider w.r.t. treatment of her shared data. We envision a sticky policy SP to be
produced in case a matching procedure is successful. This sticky policy then never
violates the preferences and is compliant with the policy, i.e., Prefs � SP �Pols
always holds. (Note that we assume that matching preferences with preferences is
analog to the matching of preferences with policies.) For instance, the preferences
may specify a maximum retention time of one year, the policy may specify that
the data consumer needs to keep the data for six months, so the resulting sticky
policy may mention any duration between six months and one year.

A privacy-conservative matching algorithm will choose a sticky policy that
is as close as possible to the policy proposed by the consumer. In the example
above, it would result in an obligation to delete the data within six months. Note
that a sticky policy includes only those preferences that contain rights the data
consumer gets or obligations he has to adhere to w.r.t. a given piece of PII.

Clearly, when a primary data consumer forwards the data to a downstream
consumer, he must also attach a sticky policy. The data consumer may have its
own preferences Prefs ′ regarding data sharing. On top of his own preferences,
the data consumer must enforce the sticky policy SP associated to this piece of
data. In other words, the primary data consumer has to find a downstream sticky
policy SP ′ so that Prefs ′�SP ′�Pols ′ and, informally, SP �SP ′�Pols ′, where
Pols ′ is the policy of the downstream data consumer. More precisely, the latter
evaluation is done by first extracting downstream preferences (PrefsDS) from
the sticky policy (SP) as depicted below, where A← B denotes the assignment
to A of the value of B:

∀Pref ∈ SP · (∀R · (R ∈ Pref .ACUC .UC .Rights ∧R =UseDS (·, ·)) ·
(Pref DS .App ← Pref.App,

Pref DS .ACUC ← R.ACUC ,

PrefsDS ← PrefsDS ∪ Pref DS)) (10)

Next PrefsDS is used for matching the downstream policy (i.e., PrefsDS�Pols ′)
and to create the downstream sticky policy SP ′ so that PrefsDS � SP ′ �Pols ′.

22

5 Conclusion and Future Work

This paper presents a simple yet expressive language to specify privacy policies
and user preferences which may express downstream usage requirements. Our
paper also describes a matching algorithm that, given a server’s privacy policy,
helps a user to decide whether her personal data can be shared with the server
according to her preferences.

Since this paper mainly focuses on the downstream aspect of privacy match-
ing, only basic examples of rights and obligations are provided. More details can
be found in [18].

This work will be extended by looking at the future work described below:

Specification of logic-based representation of matching. We would like
to specify the rules in a more formal way, e.g. using First Order Logic (FOL),
Description Logic (DL) [19], Formula [20], or the Obligation Specification
Language (OSL) [13] would be useful to verify matching, to reason on causes
of mismatch, and to propose solutions (e.g. modified preferences). We started
investigating different options and will continue this work in WP5.2.

Composition of policies. When combining pieces of data we can either keep
separate preferences (or sticky policies) or compose preferences. In this case,
each individual preference must be more (or equally) permissive than the
composite preferences. When specifying the policy of a front end service,
it is possible to either specify the policy of each downstream service or to
combine those downstream policies into one composite policy. In this case,
the composite policy must be more permissive than each individual policy.
Specifying policy composition will be done in WP5.2 and WP6.3.

Obligation and authorization ontology. To be fully functional, one has to
use our language in combination with a more complete ontology of autho-
rization and obligation types. The definition of such an ontology is out of
scope for this work, but we are planning to define more obligation types in
a prototype implementation.

Integration into XACML. We consciously kept our policy language rather
simple in expressing the applicability of a rule. By embedding our language
into a practical language such as XACML, we could leverage the higher
expressivity of the latter for our purposes. One issue that remains to be solved
in this case, however, is what effect XACML’s rule-combining algorithms will
have on the embedded policies, in particular for combining algorithms where
the effects of multiple rules have to be taken into account simultaneously.
For some of these, one may have to compose the policies of multiple rules,
similarly to what was suggested above when combining multiple pieces of
data.

Matching of access control policies. By embedding our language into XACML,
one can also profit from the expressivity of the latter in access control restric-
tions. One problem in that case, however, is that it becomes much harder
to proactively match a downstream data consumer’s properties against a
specified access control policy, because not all the relevant attributes of the

23

downstream consumer may be known upfront. In particular, environment
attributes (e.g., time of day, server load) may only be known at the time of
actual access, further complicating the proactive matching procedure.
One idea to resolve this could be to design a “hybrid” between lazy and
proactive matching, where both the data consumer’s usage control policy
does not contain the properties of the downstream consumer, but rather
contains an access control policy that will be enforced on downstream con-
sumers. Matching with a data provider’s preferences involves checking whether
the access control policy in the consumer’s policy implies the one in the
provider’s preferences. Efficiently deciding implication of two access control
policies may not be trivial for practical languages, however.

Comparing authorization and data sharing. In this work we focus on sce-
narios where the data is shared with the data consumer that must enforce
usage control. In on-line scenarios, this could be implemented by keeping the
data at user side and requiring the data consumer to request the data, for a
specific purpose, each time it requires the data and to delete it immediately
after usage. This approach would provide a better user control since the user
would enforce usage control and be able at anytime to update personal data
or to revoke access. Downstream sharing would be instantiated as delega-
tion of rights, i.e. the data consumer authorizes a third party to access the
user’s personal data for a specific purpose. We want to evaluate whether the
proposed language can be reused in such scenarios.

Acknowledgment

The authors would like to thank Ulrich Pinsdorf and Mario Verdicchio for their
constructive feedback. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 216483 for the project PrimeLife.

References

1. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL 1.2) (2003)

2. W3C: The platform for privacy preferences 1.1 (P3P1.1) specification (November
2006)

3. W3C: A P3P preference exchange language 1.0 (APPEL1.0) (2002)
4. Becker, M.Y., Malkis, A., Bussard, L.: MSR-TR-2009-128: A framework for privacy

preferences and data-handling policies. Technical report (September 2009)
5. Wang, X.: Mpeg-21 rights expression language: Enabling interoperable digital

rights management. IEEE MultiMedia 11(4) (2004) 84–87
6. ContentGuard: XrML 2.0 Technical Overview. http://www.xrml.org/reference/

XrMLTechnicalOverviewV1.pdf (2002)
7. ODRL: Open Digital Rights Language (ODRL), version 1.1 (2002)
8. Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: A

privacy-aware access control system. J. Comput. Secur. 16(4) (2008) 369–397

24

9. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Trans. Inf. Syst.
Secur. 7(1) (2004) 128–174

10. Hilty, M., Basin, D., Pretschner, A.: On obligations. Lecture Notes in Computer
Science 3679 (2005) 98–117

11. Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A policy language
for distributed usage control. In Biskup, J., Lopez, J., eds.: 12th European Sympo-
sium on Research in Computer Security (ESORICS 2007). Volume 4734 of LNCS.,
Springer-Verlag (2007) 531–546

12. Leumann, M.: Policy evaluation and negotiation in distributed usage control (Mas-
ter Thesis) (2007)

13. Pretschner, A., Schütz, F., Schaefer, C., Walter, T.: Policy evolution in distributed
usage control. In: 4th Intl. Workshop on Security and Trust Management. Elsevier
(June 2008)

14. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2) (1996) 38–47

15. Bonatti, P., Samarati, P.: A unified framework for regulating access and informa-
tion release on the web. Journal of Computer Security 10(3) (2002) 241–272

16. Moses, T.: OASIS eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard oasis-access control-xacml-2.0-core-spec-os, OASIS (Febru-
ary 2005)

17. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of a
decentralized authorization language. Journal of Computer Security (2009)

18. PrimeLife Project: Draft 2nd Design for Policy Languages and Protocols (Heart-
beat: H 5.3.2). Technical report (July 2009)

19. Baader, F., Horrocks, I., Sattler, U.: Description Logics. In: Handbook of Knowl-
edge Representation. Elsevier (2007)

20. Jackson, E.K., Schulte, W., Sztipanovits, J.: The power of rich syntax for model-
based development. Technical report (2008)

25

A A Complete Example of Proactive Matching

This appendix shows how sample preferences and policies are matched using the
rules specified in Section 4. Note that the policies and preferences are slightly
different than the ones specified in Section 3.

A.1 Preferences

1 <Preferences id="Preferences@Alice">

2 <Preference>

3 <Applicability> <DataType> EMailAddress </DataType> </Applicability>

4 <ACUC id="ACUCshipping@alice">

5 <AccessControl>

6 <Rule>CertifiedAsBy{role=shipping, issuer="CAy"}</Rule>

7 </AccessControl>

8 <UsageControl>

9 <Rights>

10 <UseForPurpose>statistics</UseForPurpose>

11 <UseForPurpose>shipping</UseForPurpose>

12 </Rights>

13 <Obligations>

14 <DeleteWithin>P7D</DeleteWithin>

15 </Obligations>

16 </UsageControl>

17 </ACUC>

18 </Preference>

19 <Preference>

20 <Applicability> <DataType> EMailAddress </DataType> </Applicability>

21 <ACUC id="ACUCshop@alice">

22 <AccessControl>

23 <Rule>CertifiedAsBy{role=shop, issuer="CAx"}</Rule>

24 </AccessControl>

25 <UsageControl>

26 <Rights>

27 <UseDownstream allowLazy="false">

28 <ACUC reference="ACUCshipping@alice"/>

29 </UseDownstream>

30 <UseForPurpose>statistics</UseForPurpose>

31 <UseForPurpose>contact</UseForPurpose>

32 </Rights>

33 <Obligations>

34 <DeleteWithin>P1Y</DeleteWithin>

35 </Obligations>

36 </UsageControl>

37 </ACUC>

38 </Preference>

39 </Preferences>

26

A.2 Policy

1 <Policies id="Policies@Shop">

2 <Policy>

3 <Applicability> <DataType> EMailAddress </DataType> </Applicability>

4 <ACUC id="ACUCemail@Shop">

5 <AccessControl>

6 <Property>CertifiedAsBy{role=shop, issuer="CAx"}</Property>

7 <Property>CertifiedAsBy{id="www.bookstore.com", issuer="CAz"}</Property>

8 </AccessControl>

9 <UsageControl>

10 <Rights>

11 <UseDownstream allowLazy="false">

12 <ACUC reference="ACUCemail@Shipping"/>

13 </UseDownstream>

14 <UseForPurpose>contact</UseForPurpose>

15 </Rights>

16 <Obligations>

17 <DeleteWithin>P14D</DeleteWithin>

18 </Obligations>

19 </UsageControl>

20 </ACUC>

21 </Policy>

22 </Policies>

1 <Policies id="Policies@Shipping">

2 <Policy>

3 <Applicability> <DataType> EMailAddress </DataType> </Applicability>

4 <ACUC id="ACUCemail@Shipping">

5 <AccessControl>

6 <Property>CertifiedAsBy{role=shipping, issuer="CAy"}</Property>

7 <Property>CertifiedAsBy{id="www.shipping.com", issuer="CAz"}</Property>

8 </AccessControl>

9 <UsageControl>

10 <Rights>

11 <UseForPurpose>shipping</UseForPurpose>

12 <UseForPurpose>statistics</UseForPurpose>

13 </Rights>

14 <Obligations>

15 <DeleteWithin>P5D</DeleteWithin>

16 </Obligations>

17 </UsageControl>

18 </ACUC>

19 </Policy>

20 </Policies>

A.3 Matching

This section will show step by step the matching process to verify
Preferences@Alice � Policies@Shop.

27

Step 1: According to (1), Preferences@Alice � Policies@Shop is true because:

– Prefs[0].App ⊇ Pols[0].App, i.e. EMailAddress ⊇ EMailAddress is true.
– Prefs[0].ACUC � Pols[0].ACUC , i.e. ACUCshop@alice �

ACUCemail@Shop is true (see Step 2).

Step 2: According to (2), ACUCshop@alice � ACUCemail@Shop is true be-
cause:

– ACUCshop@alice.AC � ACUCemail@Shop.AC is true, i.e. access is in-
deed granted according to access control rule: certified as “shop” by “CAx”.

– ACUCshop@alice.UC � ACUCemail@Shop.UC is true (see Step 3).

Step 3: According to (4), ACUCshop@alice.UC � ACUCemail@Shop.UC is
true because:

– AuthZ:
• UseDS (lazy : false, ACUCshipping@alice) �

UseDS (lazy : false, ACUCemail@Shipping) is true (see Step 4).
• UseForPurp(contact) � UseForPurp(contact) is true according to (7).

– Obligations:
• DelWithin(1year) � DelWithin(14days) is true according to (5).

Step 4: According to (9), UseDS (lazy : false, ACUCshipping@alice) �UseDS (
lazy : false, ACUCemail@Shipping) is true because:

– UseDS (lazy : false,ACUCemail@Shipping}.lazy is false and
– ACUCshipping@alice � ACUCemail@Shipping is true (see Step 5).

Step 5: According to (2), ACUCshipping@alice � ACUCemail@Shipping is
true because:

– ACUCshipping@alice.AC � ACUCemail@Shipping.AC is true, i.e. access
is indeed granted according to access control rule: certified as “shipping” by
“CAy”.

– ACUCshipping@alice.UC � ACUCemail@Shipping.UC is true (see Step
6).

Step 6: According to (4), ACUCshipping@alice.UC �

ACUCemail@Shipping.UC is true because:

– AuthZ:
• UseForPurp(shipping) � UseForPurp(shipping) is true according to

(7).
• UseForPurp(statistics) � UseForPurp(statistics) is true according to

(7).
– Obligations:
• DelWithin(7days) � DelWithin(5days) is true according to (5).

Policy matching in a more complex setting would imply more downstream
preferences and policies and would require matching other types of obligations
and authorizations. Applicability would also be more complex when hierarchy
of data types would be used.

28

B Schema of Preferences, Policies, and Sticky Policies

For completeness, we provide here the full XML Schema definition of our lan-
guage. We have separate schemas for preferences and policies due to some subtle
differences between the two (e.g., Rule vs. Property elements and different de-
fault values of the allowLazy attribute). The sticky policy schema is the same
as that of the preferences.

B.1 Preferences and Sticky Policies Schema

1 <xs:schema xmlns="http://www.primelife.eu/wp5.2/downstream/preferences"

2 targetNamespace="http://www.primelife.eu/wp5.2/downstream/preferences"

3 xmlns:xs="http://www.w3.org/2001/XMLSchema">

4
5 <xs:element name="Preferences">

6 <xs:complexType>

7 <xs:sequence>

8 <xs:element minOccurs="0" maxOccurs="unbounded" ref="Preference"/>

9 </xs:sequence>

10 <xs:attribute name="id" type="xs:anyURI"/>

11 </xs:complexType>

12 </xs:element>

13
14 <xs:element name="Preference">

15 <xs:complexType>

16 <xs:sequence>

17 <xs:element ref="Applicability"/>

18 <xs:element ref="ACUC"/>

19 </xs:sequence>

20 <xs:attribute name="sticky" type="xs:boolean" default="false"/>

21 </xs:complexType>

22 </xs:element>

23
24 <xs:element name="Applicability">

25 <xs:complexType>

26 <xs:sequence minOccurs="0" maxOccurs="unbounded">

27 <xs:choice>

28 <xs:element ref="DataType"/>

29 <xs:element ref="ResourceId"/>

30 <!-- New ways of addressing resources to be inserted here -->

31 </xs:choice>

32 </xs:sequence>

33 </xs:complexType>

34 </xs:element>

35 <xs:element name="DataType" type="xs:string"/>

36 <xs:element name="ResourceId" type="xs:anyURI"/>

37
38 <xs:element name="ACUC" type="ACUCType"/>

39 <xs:complexType name="ACUCType" abstract="true">

29

40 <xs:sequence />

41 </xs:complexType>

42
43 <xs:complexType name="ACUCReferenceType">

44 <xs:complexContent mixed="false">

45 <xs:extension base="ACUCType">

46 <xs:attribute name="reference" type="xs:anyURI" use="required" />

47 </xs:extension>

48 </xs:complexContent>

49 </xs:complexType>

50
51 <xs:complexType name="ACUCContentType">

52 <xs:complexContent mixed="false">

53 <xs:extension base="ACUCType">

54 <xs:sequence>

55 <xs:element ref="AccessControl"/>

56 <xs:element ref="UsageControl"/>

57 </xs:sequence>

58 <xs:attribute name="id" type="xs:anyURI" use="optional" />

59 </xs:extension>

60 </xs:complexContent>

61 </xs:complexType>

62
63 <xs:element name="AccessControl">

64 <xs:complexType>

65 <xs:sequence>

66 <xs:element minOccurs="0" maxOccurs="unbounded" ref="Rule" />

67 </xs:sequence>

68 </xs:complexType>

69 </xs:element>

70
71 <xs:element name="Rule" type="xs:string" />

72
73 <xs:element name="UsageControl">

74 <xs:complexType>

75 <xs:sequence>

76 <xs:element ref="Rights" minOccurs="0"/>

77 <xs:element ref="Obligations" minOccurs="0"/>

78 </xs:sequence>

79 </xs:complexType>

80 </xs:element>

81
82 <xs:element name="Rights">

83 <xs:complexType>

84 <xs:sequence>

85 <xs:choice minOccurs="0" maxOccurs="unbounded">

86 <xs:element ref="UseDownstream" />

87 <xs:element ref="UseForPurpose"/>

88 <!-- New right types to be inserted here -->

89 </xs:choice>

30

90 </xs:sequence>

91 </xs:complexType>

92 </xs:element>

93
94 <xs:element name="UseDownstream">

95 <xs:complexType>

96 <xs:sequence>

97 <xs:element ref="ACUC"/>

98 </xs:sequence>

99 <xs:attribute name="allowLazy" type="xs:boolean" default="true"/>

100 <xs:attribute name="maxDepth">

101 <xs:simpleType>

102 <xs:union>

103 <xs:simpleType>

104 <xs:restriction base="xs:integer"/>

105 </xs:simpleType>

106 <xs:simpleType>

107 <xs:restriction base="xs:string">

108 <xs:enumeration value="unbounded"/>

109 </xs:restriction>

110 </xs:simpleType>

111 </xs:union>

112 </xs:simpleType>

113 </xs:attribute>

114 </xs:complexType>

115 </xs:element>

116
117 <xs:element name="UseForPurpose" type="xs:string"/>

118
119 <xs:element name="Obligations">

120 <xs:complexType>

121 <xs:sequence maxOccurs="unbounded">

122 <xs:choice>

123 <xs:element ref="DeleteWithin"/>

124 <xs:element ref="NotifyOnAccess"/>

125 <!-- New obligation types to be inserted here -->

126 </xs:choice>

127 </xs:sequence>

128 </xs:complexType>

129 </xs:element>

130 <xs:element name="DeleteWithin" type="xs:duration"/>

131 <xs:element name="NotifyOnAccess" type="xs:string"/>

132
133 </xs:schema>

B.2 Policies Schema

1 <xs:schema

2 xmlns="http://www.primelife.eu/wp5.2/downstream/policies"

3 targetNamespace="http://www.primelife.eu/wp5.2/downstream/policies"

31

4 xmlns:xs="http://www.w3.org/2001/XMLSchema">

5
6 <xs:element name="Policies">

7 <xs:complexType>

8 <xs:sequence>

9 <xs:element minOccurs="0" maxOccurs="unbounded" ref="Policy"/>

10 </xs:sequence>

11 <xs:attribute name="id" type="xs:anyURI"/>

12 </xs:complexType>

13 </xs:element>

14
15 <xs:element name="Policy">

16 <xs:complexType>

17 <xs:sequence>

18 <xs:element ref="Applicability"/>

19 <xs:element maxOccurs="1" ref="ACUC"/>

20 </xs:sequence>

21 </xs:complexType>

22 </xs:element>

23
24 <xs:element name="Applicability">

25 <xs:complexType>

26 <xs:sequence minOccurs="0" maxOccurs="unbounded">

27 <xs:choice>

28 <xs:element ref="DataType"/>

29 <xs:element ref="ResourceId"/>

30 <!-- New ways of addressing resources to be inserted here -->

31 </xs:choice>

32 </xs:sequence>

33 </xs:complexType>

34 </xs:element>

35 <xs:element name="DataType" type="xs:string"/>

36 <xs:element name="ResourceId" type="xs:anyURI"/>

37
38
39 <xs:element name="ACUC" type="ACUCType"/>

40 <xs:complexType name="ACUCType" abstract="true">

41 <xs:sequence />

42 </xs:complexType>

43
44 <xs:complexType name="ACUCReferenceType">

45 <xs:complexContent mixed="false">

46 <xs:extension base="ACUCType">

47 <xs:attribute name="reference" type="xs:anyURI" use="required" />

48 </xs:extension>

49 </xs:complexContent>

50 </xs:complexType>

51
52 <xs:complexType name="ACUCContentType">

53 <xs:complexContent mixed="false">

32

54 <xs:extension base="ACUCType">

55 <xs:sequence>

56 <xs:element ref="AccessControl"/>

57 <xs:element ref="UsageControl"/>

58 </xs:sequence>

59 <xs:attribute name="id" type="xs:anyURI" use="optional" />

60 </xs:extension>

61 </xs:complexContent>

62 </xs:complexType>

63
64 <xs:element name="AccessControl" type="AccessControlType"/>

65
66 <xs:complexType name="AccessControlType" abstract="true">

67 <xs:sequence />

68 </xs:complexType>

69
70 <xs:complexType name="ACReferenceType">

71 <xs:complexContent>

72 <xs:extension base="AccessControlType">

73 <xs:attribute name="reference" type="xs:anyURI" use="required" />

74 </xs:extension>

75 </xs:complexContent>

76 </xs:complexType>

77
78 <xs:complexType name="ACContentType">

79 <xs:complexContent>

80 <xs:extension base="AccessControlType">

81 <xs:sequence>

82 <xs:element ref="Property" maxOccurs="unbounded"/>

83 </xs:sequence>

84 <xs:attribute name="id" type="xs:anyURI"/>

85 </xs:extension>

86 </xs:complexContent>

87 </xs:complexType>

88
89 <xs:element name="Property" type="xs:string"/>

90
91 <xs:element name="UsageControl">

92 <xs:complexType>

93 <xs:sequence>

94 <xs:element ref="Rights" minOccurs="0"/>

95 <xs:element ref="Obligations" minOccurs="0"/>

96 </xs:sequence>

97 </xs:complexType>

98 </xs:element>

99
100 <xs:element name="Rights">

101 <xs:complexType>

102 <xs:sequence>

103 <xs:choice minOccurs="0" maxOccurs="unbounded">

33

104 <xs:element ref="UseDownstream" />

105 <xs:element ref="UseForPurpose" />

106 <!-- New right types to be inserted here -->

107 </xs:choice>

108 </xs:sequence>

109 </xs:complexType>

110 </xs:element>

111
112 <xs:element name="UseDownstream">

113 <xs:complexType>

114 <xs:sequence>

115 <xs:element ref="ACUC" minOccurs="0" maxOccurs="1"/>

116 </xs:sequence>

117 <xs:attribute name="allowLazy" type="xs:boolean" default="false"/>

118 <xs:attribute name="maxDepth">

119 <xs:simpleType>

120 <xs:union>

121 <xs:simpleType>

122 <xs:restriction base="xs:integer"/>

123 </xs:simpleType>

124 <xs:simpleType>

125 <xs:restriction base="xs:string">

126 <xs:enumeration value="unbounded"/>

127 </xs:restriction>

128 </xs:simpleType>

129 </xs:union>

130 </xs:simpleType>

131 </xs:attribute>

132 </xs:complexType>

133 </xs:element>

134
135 <xs:element name="UseForPurpose" type="xs:string"/>

136
137 <xs:element name="Obligations">

138 <xs:complexType>

139 <xs:sequence maxOccurs="unbounded">

140 <xs:choice>

141 <xs:element ref="DeleteWithin"/>

142 <xs:element ref="NotifyOnAccess"/>

143 <!-- New obligation types to be inserted here -->

144 </xs:choice>

145 </xs:sequence>

146 </xs:complexType>

147 </xs:element>

148
149 <xs:element name="DeleteWithin" type="xs:duration"/>

150 <xs:element name="NotifyOnAccess" type="xs:string"/>

151
152 </xs:schema>

