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Abstract

Secure distributed computing addresses the problem of performing a
computation with a number of mutually distrustful participants, in such
a way that each of the participants has only limited access to the in-
formation needed for doing the computation. Over the past two dec-
ades, a number of solutions requiring no trusted third party have been
developed using cryptographic techniques. The disadvantage of these
cryptographic solutions is the excessive communication overhead they
incur.

In this paper, we use one of the SDC protocols for one particular
application: second price auctions, in which the highest bidder acquires
the item for sale at the price of the second highest bidder. The protocol
assures that only the name of the highest bidder and the amount of the
second highest bid are revealed. All other information is kept secret (the
amount of the highest bid, the name of the second highest bidder, ...).
Although second price auctions may not seem very important, small
variations on this theme are used by many public institutions: e.g., a



call for tenders, where contract is given to the lowest offer (or the second
lowest).

The case study serves two purposes: we show that SDC protocols
can be used for these kind of applications, and secondly, we assess the
network overhead and how well these applications scale. To overcome
the communication overhead, we use mobile agents and semi-trusted
hosts.

Keywords: Secure distributed computing, SDC, mobile agents, second price auc-
tion, agents, semi-trusted execution platform

1. INTRODUCTION

Secure distributed computing (SDC) addresses the problem of dis-
tributed computing where some of the algorithms and data that are
used in the computation must remain private. Usually, the problem
is stated as follows, emphasizing privacy of data. Let f be a publicly
known function taking n inputs, and suppose there are n parties (named
P,,i =1...n), each holding one private input z;. The n parties want to
compute the value f(z1,... ,x,) without leaking any information about
their private inputs (except of course the information about z; that is im-
plicitly present in the function result) to the other parties. An example
is voting: the function f is addition, and the private inputs represent
yes (z; = 1) or no (z; = 0) votes. In case an algorithm is to be kept
private, instead of just data, one can make f an interpreter for some
(simple) programming language, and let one of the z; be an encoding of
a program.

In descriptions of solutions to the secure distributed computing prob-
lem, the function f is usually encoded as a boolean circuit, and therefore
secure distributed computing is also often referred to as secure circuit
evaluation.

It is easy to see that an efficient solution to the secure distributed
computing problem would be an enabling technology for a large number
of interesting distributed applications across the Internet. Some example
applications are: auctions ([8]), charging for the use of algorithms on the
basis of a usage count ([9, 10]), querying a secret database ([6]), various
kinds of weighted voting, protecting mobile code integrity and privacy (
[10, 5)), ...

Secure distributed computing is trivial in the presence of a globally
trusted third party(TTP): all participants send their data and code to
the TTP (over a secure channel), the TTP performs the computation
and broadcasts the results. The main drawback of this approach is the
large amount of trust needed in the TTP.
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Solutions without a T'TP are also possible. Over the past two decades,
a fairly large variety of solutions to the problem has been proposed. An
overview is given by Franklin [3] and more recently by Cramer [2] and
Neven [7]. These solutions differ from each other in the cryptographic
primitives that are used, and in the class of computations that can be
performed (some of the solutions only allow for specific kinds of functions
to be computed). The main drawback, however, of these solutions is the
heavy communication overhead that they incur.

In this paper, we investigate a case study: second price auctions. Here,
the highest bidder wins but has to pay the second highest bid. The final
outcome will only reveal the name of the winner and the amount of the
second highest bid. All other bids and even the name of the second
highest bidder remain secret. We have chosen this application, because
it illustrates the merits of SDC, and is somewhat exemplary for many
other useful applications. For instance, the authority and many public
institutions request for quotations before awarding the job/purchase to
the lowest or second lowest offer. The reader can easily verify that
determining the lowest (or second lowest) offer, without revealing the
other quotations, is only a small variation on our case study.

In this case study, we try to be as specific as possible. We will show
how SDC can be used in this application. Moreover, we will look at the
performance. In particular, we examine the communication overhead
and the scalability of the application in terms of number of participants.
Although the communication overhead seems prohibitively high, a reas-
onable remedy is proposed, using mobile agents and semi-trusted sites.
Indeed, mobile agents employing SDC protocols can provide for a trade-
off between communication overhead and trust. The communication
overhead is alleviated if the communicating parties are brought close
enough together. In our approach, every participant sends its repres-
entative agent to a trusted execution site. The agent contains a copy
of the private data x; and is capable of running an SDC-protocol. Dif-
ferent participants may send their agents to different sites, as long as
these sites are located closely to each other. Of course, a mobile agent
needs to trust his execution platform, but we will show that the trust
requirements in this case are much lower than for a classical TTP. Also,
in contrast with protocols that use unconditionally TTPs, the trusted
site is not involved directly. It simply offers a secure execution platform:
i.e. it executes the mobile code correctly, does not spy on it and does
not leak information to other mobile agents. Moreover, the trusted host
does not have to know the protocol used between the agents. In other
words, the combination of mobile agent technology and secure distrib-
uted computing protocols makes it possible to use a generic TTP that,
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by offering a secure execution platform, can act as TTP for a wide vari-
ety of protocols in a uniform way. A detailed discussion of the use of
mobile agent technology for advanced cryptographic protocols is given
in [7].

The sequel of the paper is organized as follows: in section 2, we review
one of the SDC protocols that will be used by the application; a design
of the the application, second price auctions, is given in section 3; in
this section, we also examine the communication overhead and tackle
the scalability issue. In section 4, we introduce a modus operandi for
the application. Finally, in section 5, we summarize the main outcomes
of this paper.

2. SECURE DISTRIBUTED COMPUTING
USING GROUP-ORIENTED
CRYPTOGRAPHY

In [4], Franklin and Haber propose a protocol that evaluates a boolean
circuit on data encrypted with a homomorphic probabilistic encryption
scheme for any number of participants. It resembles the protocol for two
parties, proposed by Abadi and Feigenbaum ([1]).

To extend the idea of [1] to the multi-party case, an encryption scheme
is needed that allows anyone to encrypt, but needs the cooperation of all
participants to perform a decryption. In a joint encryption scheme, all
participants know the public key K, while each participant P,... , P,
has his own private key Kj,... ,K,. Using the public key, anyone can
create an encryption Fg(m) of some message m, where S C {Pi,... , P},
such that the private key of each participant in S is needed to decrypt.
More formally, if D; denotes the decryption with P;’s private key, the
relation between encryption and decryption is given by

D;i(Es(m)) = Eg\(p;)(m)

The plaintext m should be easily recoverable from Ey(m).
In the joint encryption scheme used by Franklin and Haber, a bit b is
encrypted as

T
Es(b) = |g" mod N, (—l)b(Hng> mod N]
j€S

where N = pg, p and g are two primes such that p = ¢ mod 4, and r €g
Zy. The public key is given by [N, g,¢%' mod N,...,g%" mod N]
where each K; represents the private (secret) key of participant P;.

This scheme has some additional properties that are used in the pro-
tocol:
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»  XOR-Homomorphic. Anyone can compute a joint encryption of
the XOR of two jointly encrypted bits. Indeed, if Eg(b) = [a, (]
and Eg(b') = [, '], then Eg(b®b') = [@d’ mod N, 35 mod NJ.

s Blindable. Given an encrypted bit, anyone can create a random
ciphertext that decrypts to the same bit. Indeed, if Eg(b) = [a, f]
and 7 €g Zy, then

T
ag” mod N, ﬂ(HgKJ) mod N]

j€s

is a joint encryption of the same bit.

m  Witnessable. Any participant can withdraw from a joint encryp-
tion by providing the other participants with a single value. In-
deed, if Eg(b) = [a, (], it is easy to compute D;(Eg (b)) from

Willa, B) = @™ mod N

First of all, the participants must agree on a value for N and g, choose
a secret key K; and broadcast ¢ mod N to form the public key. To
start the actual protocol, each participant broadcasts a joint encryption
of his input bits. For an XOR-gate, everyone simply applies the XOR-
homomorphism. The encrypted output of a NOT-gate can be found by
applying the XOR-homomorphism with a default encryption of a one,
e.g. [1,-1].

However, it is the AND-gate that causes some trouble. Suppose the
encrypted input bits for the AND-gate are & = E(u) and 0 = E(v).
To compute a joint encryption @ = E(w) = E(u A v), they proceed as
follows:

1 Each participant P; chooses random bits b; and ¢; and broadcasts
bi = E(b,) and éi = E(Cz)

2 Each participant repeatedly applies the XOR-homomorphism to
calculate &' = E(u') = E(u® b1 ®...®b,) and ' = E(v') = E(v®
c1®...Pc,). Each participant broadcasts decryption witnesses
W;(4') and W;(2').



3 Everyone can now decrypt 4’ and 9. We have the following relation
between w' = v’ Av' and w = u A v:

w = u AV
= WO @ Db)AVDCL D Dey)
= (uAv) @& (UAc) - (uAcy)
& (bhtAhc) & (byAcr)

& (iAcy) @0 (byAcy)
® (binv) @@ (byAv)
N — N —

w1 Wn,
= (UAV) Qw1 & Bwy

Each participant is able to compute a joint encryption of w;: he
knows b; and ¢; (he chose them himself) and he received encryp-
tions ¢; from the other participants, so he can compute E(b; A c;)
as follows:

m If b, = 0, then b; Ac; = 0, so any default encryption for a zero
will do, e.g. [1,1].

m If b; = 1, then b; A c; = ¢j, so ¢; is a valid substitution for
E(b; A cj).

E(uA¢;) and E(v A b;) can be computed in an analogous way. He
uses the XOR-homomorphism to combine all these terms, blinds
the result and broadcasts this as w;.

4 Each participant combines %' and @; (j = 1...n), again using the
XOR-homomorphism, to form o = E(w).

When all gates in the circuit have been evaluated, every participant
has a joint encryption of the output bits. Finally, all participants broad-
cast decryption witnesses to reveal the output.

3. SECOND PRICE AUCTIONS

In this section we consider second price auctions, where there is one
item for sale and there are n bidders. The item will only be sold if the
bid of one participant is strictly higher than the other bids. In all other
cases there is no winner. The clearing price is the second highest bid.
The requirements for this type of auction are the following:

m if there is no winner, nothing is revealed;

m if there is a winner:
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— the identity of the highest bidder is revealed, but the highest
bid remains secret;

— the 2" highest bid is revealed, but the identity of the 2d
highest bidder is kept secret;

— no other information (other bids) are to be revealed.

For three participants X, Y and Z, the boolean circuit is shown in
figure 1. The inputs to the circuit are 32-bit bids'. The output is the
identity of the winner, represented by the bits R1 and R0 (R1R0 = 00
no winner, 01 winner is X, 10 winner is Y, 11 winner is Z), and the
clearing price. If there is no winner, the clearing price is set to zero. To
determine the winner, the circuit uses three comparators and a number
of AND and OR gates. To determine the clearing price, four multiplexers
are used. Consider the situation where X makes the highest bid. In this
case GING2 =1, L1NG3 =0, L2 AN L3 = 0 and R1R0 = 10, so the
second input to the final multiplexer will be chosen. The input on this
line is determined by the bids made by Y and Z. If Y > Z then G3 =1
and Y will be selected as the clearing price. In the other cases (Y < Z
or Y = Z) Z will be the clearing price.

Our goal is to estimate the communication overhead of an imple-
mentation of secure distributed second price auctions with the protocol
proposed by Franklin and Haber. The auction is designed as a boolean
circuit and the communication overhead for secure circuit evaluation is
estimated. The communication overhead is determined by the following
steps in the protocol:

m broadcast of the encrypted input bits of each participant;
m evaluation of an AND gate:

— broadcast of the encrypted bits E(b;), E(c;);
— broadcast of the decryption witnesses W;(4'), W;(');
— broadcast of the blinded ;;

m broadcast of the output decryption witnesses.
The associated communication overhead is:

m 2.|N|-in;-n for the broadcast of the input bits;

m 8. |N|-n for the evaluation of an AND gate;

m |N|:out-n for the decryption broadcast.

where | N| is the length of N in bits, which is the same as the number of
bits needed to represent an element of Z%;, in; is the number of input bits
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Figure 1 Boolean circuit implementation of second price auctions.

of participant 4, n is the number of participants and out is the number
of output bits of the circuit. In order to estimate the communication
overhead, we need to be able to determine the number of AND gates in
the boolean circuit (note that each OR gate can be implemented with
AND and NOT gates). Each comparator can be built with 374 AND-
gates2

For n > 3 participants, the circuit changes as follows. The number
of comparators needed is now (5) = n- (n —1)/2. The final multiplexer
will need to distinguish between n + 1 different cases, i.e. n possible
winners or no winner at all. The other n multiplexers are there to select
the clearing price out of n — 1 bids when there is a winner. The number
of AND gates needed for each multiplexer as a function of the number
of inputs m is shown in figure 2. Besides the comparators and the
multiplexers, some additional AND and OR gates are needed. However,
the number of these gates is negligible compared to the number of gates
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[ log, (m) 1
f_Aﬂ
L]

(65 211092 (m) 1+ 1 _ 34y AND gates

xc=

Figure 2 Number of AND gates needed in a mulitplexer

needed for the comparators and multiplexers. In summary, the circuit
has a total gate complexity of O(n?).

The results of estimating the communication overhead for this circuit
as a function of the number of participants n are summarized in table 13.
Franklin and Haber’s protocol is linear in the number of broadcasts, so
the total message complexity is O(n3). However, it must be noted that
this only holds on a network with broadcast or multicast functionality,
such that the communication overhead of sending a message to all parti-
cipants is the same as that of sending a message to a single participant.
In absence of such infrastructure, the total message complexity is O(n?).

Table 1 Network overhead of secure second price auctions

n |4 16 32

Overhead (MB) | 15 1000 8000

4. MODUS OPERANDI

From the previous section, it should be clear that the design of the
application has pros and cons:

= A major advantage is that our solution does not require a globally
trusted third party that plays the role of the arbiter.

m The worst drawback is the immense communication overhead and
the fact that the solution does not scale very well.

There exists a trade-off between trust and communication overhead in
both options, the first one using a TTP and the solution that uses SDC.
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In this section, we investigate this trade-off and present a nice remedy
for the communication overhead.

If a globally trusted third party is used, every participant, P;, has to
send its private bid z; to that TTP who will select the highest bidder,
determine the second highest bid, and disseminate its decision to the
participants P;,i = 1..n. (See figure 3). Of course, before sending its
private data to the TTP, every P; must first authenticate the TTP, and
then send z; through a safe channel. This can be accomplished via
conventional cryptographic techniques. It is clear that this approach
has a very low communication overhead: the data is only sent once to
the TTP; later, every participant receives the result of the computation.
However, every participant should uncondionally trust the T'TP. It is not
clear whether n distrustful participants will easily agree on one single
trustworthy site. If this site is compromised, all secrets, z; may be
compromised! Also, the site needs the appropriate software for this
particular application. Hence, for every new ‘application’ new software
needs to be installed. Therefore, the participants not only need to trust
the (security of) the site, but also the software for this application.

TTP

Figure 8 2nd Price Auction Using a TTP.

In our approach (see figure 4), the trust requirements are really min-
imal: every participant P; trusts its own execution site E;, and expects
that the other participants provide correct values for their own inputs.
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(Note that in this protocol, a participant cannot cheat, because of the
use of witnesses.) Although our approach is very attractive, it suffers
extensive communication overhead and does not scale well.

Figure 4 2nd Price Auction Using SDC.

The communication overhead of SDC-techniques can be remedied by
introducing semi-trusted execution sites and mobile agents. (See fig-
ure 5). Every participant P; sends its representative, agent A;, to a
trusted execution site F;. The agent contains a copy of the private data
z; and is capable of running a SDC-protocol. It is allowed that differ-
ent participants send their agents to different sites. The only restriction
being that the sites should be located closely to each other, i.e. should
have high bandwidth communication between them. Of course, every
execution site needs a mechanism to safely download an agent. How-
ever, that can be easily accomplished through convential cryptographic
techniques. The amount of large distance communication is moderate:
every participant sends its agent to a remote site, and receives the result
from its agent. The agents use a SDC-protocol, which unfortunately
involves a high communication overhead. However, since the agents are
executing on sites that are near each other, the overhead of the SDC-
protocol is acceptable. No high bandwidth communication between the
participants is necessary, and there is no longer a need for one single
trusted execution site. The agents that participate in the secure compu-
tation are protected against malicious behaviour of other (non-trusted)
execution sites by the SDC-protocols. That is sufficient to make this
approach work. Moreover, in contrast with the approach where one uses
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an unconditionally trusted third party, the trusted sites are not involved
directly. They simply offer a secure erecution platform: the trusted
hosts do not have to know the protocol used between the agents. In
other words, the combination of mobile agent technology and secure dis-
tributed computing protocols makes it possible to use generic trusted
third parties that, by offering a secure execution platform, can act as
trusted third party for a wide variety of protocols in a uniform way.
Finally, the question remains whether it is realistic to assume that par-
ticipants can find execution sites that are close enough to each other.
Given the fact however that these execution sites can be generic, we
believe that providing such execution sites could be a commercial oc-
cupation. Various deployment strategies are possible. Several service
providers, each administering a set of geographically dispersed “secure
hosts”, can propose their subscribers an appropriate site for the secure
computation. The site is chosen to be in the neighborhood of a secure
site of the other service providers involved. Another approach is to have
execution parks, offering high bandwidth communication facilities, were
companies can install their proprietary “secure site”. The park itself
could be managed by a commercial or government agency.

Py

l’ Semi-Trusted Host \
|
I
\ \
\ \

AN Pn*

Figure 5 2nd Price Auctions Using Agents (SDC) and Semi-Trusted Sites.
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5. CONCLUSIONS

This paper demonstrates that second price auctions, and many other
relevant applications, can be implemented by using SDC protocols. That
way, the participants can make sure that all confidential information is
kept secret. The major disadvantage, the overwhelming communication
overhead, can be remedied through the use of mobile agents and semi-
trusted sites. There is no need for one generally trusted site, nor does
the program code have to be endorsed by all participants. The trusted
execution sites are generic and can be small (which might allow to draft a
formal security for these sites). The communication overhead of secure
distributed computing protocols is no longer prohibitive for their use
since the execution sites are located closely to each other.

Notes

1. In reality, fewer bits (e.g. 8 or 16) would suffice.

2. The boolean function A > B, can be expressed as Ao.Bo + (Ao.Bo + Ag.Bo).(A1.B1 +
(A1.B1 + A1.B1).(A2.B>...)). Hence if A and B are k-bit numbers, 1 + 6(k — 1) AND gates
are needed. Both functions, A > B and B > A, are needed for each comparator.

3. We choose |N| to be 1024 bits.
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