
On the (Im)possibility of Blind Message
Authentication Codes

Michel Abdalla1, Chanathip Namprempre2, and Gregory Neven1,3

1 Departement d’Informatique
École normale supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France
Michel.Abdalla@ens.fr

http://www.di.ens.fr/~mabdalla
2 Electrical Engineering Department

Thammasat University
Klong Luang, Patumtani 12121, Thailand

cnamprem@engr.tu.ac.th

http://www.engr.tu.ac.th/~cnamprem
3 Department of Electrical Engineering

Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Heverlee-Leuven, Belgium

Gregory.Neven@esat.kuleuven.ac.be

http://www.neven.org

Abstract. Blind signatures allow a signer to digitally sign a document
without being able to glean any information about the document. In this
paper, we investigate the symmetric analog of blind signatures, namely
blind message authentication codes (blind MACs). One may hope to get
the same efficiency gain from blind MAC constructions as is usually ob-
tained when moving from asymmetric to symmetric cryptosystems. Our
main result is a negative one however: we show that the natural sym-
metric analogs of the unforgeability and blindness requirements cannot
be simultaneously satisfied. Faced with this impossibility, we show that
blind MACs do exist (under the one-more RSA assumption in the ran-
dom oracle model) in a more restrictive setting where users can share
common state information. Our construction, however, is only meant to
demonstrate the existence; it uses an underlying blind signature scheme,
and hence does not achieve the desired performance benefits. The con-
struction of an efficient blind MAC scheme in this restrictive setting is
left as an open problem.

Keywords. Provable security, blind signatures, blind MACs.

1 Introduction

The concept. Blind signatures [7, 8] allow a signer to digitally sign a docu-
ment while preventing the signer from seeing the content of the document, or
even from recognizing the signature when faced with it later on. Blind signa-
tures form a crucial anonymity-providing ingredient in digital cash protocols [7,

2 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

9], and have also been applied in a number of electronic voting schemes [7, 10,
13] to protect voters’ privacy. Since their first introduction in 1982, blind signa-
tures have become a well-studied primitive with formal security notions [12, 15],
practical schemes realizing these notions under various assumptions [8, 15, 2, 5,
6], and a theoretical construction based on the existence of trapdoor one-way
permutations [12].

In the same way that message authentication codes (MACs) can be seen as
the symmetric-key equivalent of digital signatures, Pinkas [14] suggested blind
MACs as the symmetric analog of blind signatures – leaving the construction
of such schemes as an open problem however. In a blind MAC scheme, a user
interacts with a tagger that knows a secret key K to obtain a valid tag τ for a
message M , but without leaking any information about M to the tagger in the
process. At a later point in time, the tagger can use K to check the validity of
a given message-tag pair (M, τ), but cannot link it back to the session during
which the tag was created.

Motivation. The main motivation for blind MACs is efficiency. As is the case
for standard MACs, one could hope to construct blind MACs from purely sym-
metric primitives, so that they can provide a more efficient alternative in appli-
cations where not all of the properties provided by digital signatures are needed.
Good candidate applications are those where signatures are verified by the same
entity that created them. In particular, we are interested in applications in which
a “signer” does not need to convince others that it has generated (or has ap-
proved) the data in question, but only needs to convince itself at some later time
that the data have not been modified. In other words, only the integrity of the
data, not the non-repudiation of the data source, is of interest.

The first mention in public literature (to the best of our knowledge) of blind
MACs was made by Pinkas [14] in the context of a fairness-providing transfor-
mation of Yao’s secure two-party computation protocol [17]. The evaluator of
the circuit commits to a number of 0 and 1-bits, and has these commitments
blindly signed by the circuit constructor. The constructor then puts the blinded
signatures in the output tables of the garbled circuit. At the end of the pro-
tocol, the constructor and evaluator gradually open their commitments. The
constructor can verify that he indeed signed the commitments being opened by
the evaluator, which prevents the latter from opening a commitment to some
random value instead of the real output. Pinkas noted that, since the signatures
are generated and verified by the same party, blind MACs could be used instead
of blind signatures. He did not provide any formal definitions of the concept
however, and left an actual construction as an open problem.

Blind MACs could also be used in Chaum’s original online digital cash pro-
tocol [7]. A coin in this protocol is essentially a unique identifying string that
is blindly signed by the bank. When the coin is spent, the merchant verifies the
bank’s signature and forwards the coin to the bank. The bank checks the valid-
ity of the signature again, and looks up in a database whether the coin is being
double-spent. If not, it transfers the correct amount to the merchant’s account,
and adds the coin’s identifying string to the database. Since the bank has to be

On the (Im)possibility of Blind Message Authentication Codes 3

online at the time the coin is spent anyway, the merchant may just as well leave
the verification entirely up to the bank, so that the latter can use blind MACs
instead of blind signatures (assuming that the clients’ bank is the same as the
merchants’ bank). The gain in efficiency will reduce the infrastructural require-
ments brought about by online payment processing, and may actually make the
protocol feasible in practice. In fact, we recently learned that blind MACs were
already considered in this particular context by the Digicash research team [16].
They did not further pursue this idea because they suspected blind MACs to be
impossible, without proving this fact however.

A third instance where blind MACs could take the place of blind signatures
is in certain electronic voting schemes. The protocol of Fujioka et al. [10] for ex-
ample works as follows. Voters commit to their votes, and have the commitment
blindly signed by an administrator who checks their right to vote. All voters
then send the signed commitment through an anonymous channel to a second
authority called the counter. The counter verifies the administrator’s signature
and publishes all commitments on a bulletin board. At the end of the voting
stage, each voter checks that his/her vote is posted on the bulletin board, and
publicly complains if it is not. Finally, voters anonymously send the opening
information for their commitments to the counter, who publishes everything on
the bulletin board and announces the result of the election.

Note that in this protocol, the signer and verifier are not the same entity.
Nevertheless, the administrator could use a blind MAC scheme to tag the voters’
commitments, and reveal the tagging key after the end of the voting stage. MAC
values are more efficiently verified than signatures, thus lowering the computa-
tional threshold for citizens to perform an independent audit of the election.
A disadvantage is that the counter cannot verify the validity of commitments
before posting them on the bulletin board, possibly resulting in more “junk”
votes being published there. This problem however is also present in the original
scheme, since voters can publish false complaints, of which the validity has to
be checked as well. Moreover, if the counter can be trusted not to create fake
registrations, then the administrator could give him the secret key at the start
of the election already, allowing him to “weed out” junk votes earlier on.

Our results. We first give proper definitions for the syntax and security of
blind MACs, modeled after those of blind signatures. Our main result is a neg-
ative one: in Theorem 4, we show that the natural symmetric analogs of the
one-more unforgeability [15] and blindness [12] requirements are contradictory,
meaning that blind MACs satisfying both properties simultaneously cannot ex-
ist. Intuitively, the problem is that, because of the absence of a public key, the
user has no way to check whether the tagger is using the same key through-
out different tagging sessions. We present a universal adversary that breaks the
blindness of any blind MAC scheme by using different keys in different tagging
sessions, and we show that this attacker always succeeds, unless the scheme is
forgeable.

Faced with the impossibility of blind MACs in their most general definition,
we investigate whether they can exist under a more restrictive, yet still somewhat

4 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

useful definition. In Section 5, we give a provably secure blind MAC construction
in a setting where users share common state information. Whether this setting
is realistic depends on the application. For Pinkas’ two-party computation pro-
tocol [14], this is a perfectly reasonable assumption since there is only one user,
the circuit evaluator, who can easily maintain state throughout different signing
sessions. For digital cash and voting schemes however, it may be less realistic to
assume the availability of common state information.

The sole purpose of our construction is to demonstrate the existence of blind
MACs in this restrictive setting. It is based on an underlying blind signature
scheme, and therefore does not achieve the performance benefits one would hope
to get from a blind MAC scheme. We argue however that, before trying to come
up with efficient constructions, it is important to understand what it exactly
is that we are trying to construct, and whether it can be constructed at all.
The fact that blind MACs can be constructed from blind signatures may sound
rather unsurprising at first, but is not trivial: firstly, our impossibility result
shows that not even such a “trivial” construction exists in the most natural
definition of blind MACs, and secondly, our construction needs a special form of
blindness from the underlying blind signature scheme, which we had to prove to
be satisfied by a slight variant of Chaum’s scheme [8].

Organization. Section 2 recalls the definition of blind signatures and the se-
curity notions. Section 3 presents the definition and security notions for blind
MACs. Section 4 states and proves the impossibility result. Section 5 describes
the weaker model with state-sharing users, and shows that a secure blind MAC
scheme exists in this model. Section 6 considers extensions to concurrent attack
scenarios. Section 7 lists a few open problems.

2 Blind Signatures

Notation. We let N = {1, 2, 3, . . .} denote the set of natural numbers. If k ∈ N,
then 1k is the string of k ones. The empty string is denoted ε. If x, y are strings,
then |x| is the length of x and x‖y is the concatenation of x and y. If S is a set,
then |S| is its cardinality. If A is a randomized algorithm, then A(x1, x2, . . . :
O1,O2, . . .) means that A has inputs x1, x2, . . . and access to oracles O1,O2,

Also y
$

← A(x1, x2, . . . : O1,O2, . . .) means that we run the randomized algorithm
A on inputs x1, x2, . . . and with access to oracles O1,O2, . . ., and let y denote
the output obtained.

An interactive algorithm is a stateful algorithm that on input an incoming
message Min (this is ε if the party is initiating the protocol) and state information
St outputs an outgoing message Mout and updated state St ′. For an interactive
algorithm A having access to oracles O1,O2, . . ., this is written as (Mout,St ′)

$

←
A(Min,St : O1,O2, . . .). Two interactive algorithms A and B are said to interact
when the outgoing messages of A are passed as incoming messages to B, and
vice versa, until both algorithms enter either the halt or the fail state. We
write (MA,StA,MB,StB)

$

← [[[A(StA) ↔ B(StB)]]] to denote the final outgoing
messages and states after an interaction between A and B when run on initial

On the (Im)possibility of Blind Message Authentication Codes 5

states StA and StB, respectively. More formally, it is the outcome of the following
experiment:

MB ← ε

Repeat

(MA,StA)
$

← A(MB,StA) ; (MB,StB)
$

← B(MA,StB)
Until {StA,StB} ⊆ {halt, fail}
Return (MA,StA,MB,StB)

Syntax of blind signatures. We repeat the definition of blind signatures as
proposed by Juels et al. [12]. A blind signature scheme BS is a tuple of four
polynomial-time algorithms (Kg,User,Sign,Vf) where

– the randomized key generation algorithm Kg, on input a security parameter
1k with k ∈ N, outputs a public key pk and a corresponding secret key sk .

– User and Sign are possibly randomized interactive algorithms called the user
and signer algorithm, respectively. The user runs the User algorithm on an
initial state consisting of a public key pk and a message M ∈ {0, 1}∗, and
lets it interact with the Sign algorithm that is run by the signer on initial
state a secret key sk . At the end of the protocol, the User algorithm either
enters the halt state and outputs a signature σ as its last outgoing message,
or enters the fail state to indicate failure. The Sign algorithm simply enters
the halt state at the end of the protocol, without generating any output.

– the deterministic verification algorithm Vf takes a public key pk , a message
M ∈ {0, 1}∗ and a signature σ as input, and outputs acc or rej to indicate
acceptance or rejection of the signature, respectively.

Correctness of a blind signature scheme requires that for all k ∈ N and for
all M ∈ {0, 1}∗, it holds that StUser = halt and Vf(pk ,M, σ) = acc when

(pk , sk)
$

← Kg(1k) and (MSign,StSign, σ,StUser)
$

← [[[Sign(sk) ↔ User((pk ,M))]]]
with probability 1.

Unforgeability of blind signatures. The security of a blind signature
scheme is twofold: on the one hand, a user should not be able to forge sig-
natures (unforgeability), and on the other hand, the signer should not be able to
see the message that is being signed, or even be able to relate signed messages
to previous protocol sessions (blindness).

The standard definition of existential unforgeability under chosen-message
attack [11] does not apply to blind signatures: the signer doesn’t see the mes-
sages he signs, and hence the experiment has no way of telling whether the
forgery is on a new message or on a message that was signed before. There-
fore, we use the notion of one-more unforgeability as introduced by Pointcheval
and Stern [15]. Let BS = (Kg,User,Sign,Vf) be a blind signature scheme, let
k ∈ N be the security parameter, and let A be a forging algorithm. The exper-

iment first generates a fresh key pair (pk , sk)
$

← Kg(1k), and runs A on input
(1k, pk). The adversary has access to a signing oracle that runs the Sign(sk , ·)
algorithm and maintains state across invocations. (In a sequential attack, only

6 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

one signing session can be active at the same time, while a parallel attack al-
lows arbitrarily interleaved sessions. For simplicity, we concentrate on sequential
attacks first, and postpone the discussion of parallel attacks to Section 6.) At
the end of its execution, the adversary outputs a set of message-signature pairs
{(M1, σ1), . . . , (Mm, σm)}. Let n be the number of completed signing sessions
during A’s attack. Then A is said to win the game if Vf(pk ,Mi, σi) = acc for all
1 ≤ i ≤ m, all Mi are different and m > n.

The advantage function Advomu-sa
BS , A (k) is defined as A’s probability of winning

the above game, and BS is said to be one-more unforgeable under sequential
attacks (omu-sa-secure) if this is a negligible function for all polynomial-time
adversaries A. We note here that, in the definition above and in the rest of
the paper, the “time complexity” is the worst case total execution time of the
experiment plus the code size of the adversary in some fixed RAM model of
computation.

Blindness of blind signatures. We present a sequential variant of the blind-
ness notion as introduced by Juels et al. [12]. The adversary now plays the role
of a cheating signer, who is trying to distinguish between two signatures created
in different signing sessions. The experiment chooses a random bit b, generates
a fresh key pair (pk , sk) and runs the adversary A on input (1k, pk , sk). The ad-
versary outputs two challenge messages M0 and M1. Then, the adversary plays
the role of the signer in two sequential interactions with a User algorithm. If
b = 0, then the first interaction is with User(pk ,M0) and the second is with
User(pk ,M1); if b = 1, then A first interacts with User(pk ,M1) and then with
User(pk ,M0). If in both sessions the User algorithms accept, then A is addition-
ally given the resulting signatures σ0, σ1 for messages M0,M1. The adversary
outputs its guess d and wins the game if b = d. The advantage Advblind-sa

BS , A (k)
is defined as 2p − 1, where p is the probability that A wins this game. The
scheme BS is said to be blind under sequential attacks (blind-sa-secure) if this is
a negligible function for all polynomial-time adversaries A. We refer to the full
version [1] for formal descriptions of the experiments defining security for blind
signatures.

3 Blind MACs

Syntax of blind MACs. We define the syntax and security of blind MAC
schemes in analogy to those of blind signatures.

Definition 1 [Syntax of a blind MAC scheme.] A blind MAC scheme
BMAC is a tuple of four polynomial-time algorithms (Kg,User,Tag,Vf) where

– the randomized key generation algorithm Kg, on input a security parameter
1k with k ∈ N, outputs a key K .

– User and Tag are possibly randomized interactive algorithms called the user
and tagging algorithm, respectively. The user runs the User algorithm on an
initial state containing the security parameter 1k and a message M ∈ {0, 1}∗,

On the (Im)possibility of Blind Message Authentication Codes 7

and lets it interact with the Tag algorithm that is run by the tagger on initial
state the key K . 4 At the end of the protocol, the User algorithm either enters
the halt state and outputs a MAC value τ as its outgoing message, or enters
the fail state to indicate failure. The Tag algorithm simply enters the halt
state at the end of the protocol, without generating any output.

– the deterministic verification algorithm Vf takes a key K , a message M ∈
{0, 1}∗ and a MAC value τ as input, and outputs acc or rej to indicate
acceptance or rejection of the MAC value, respectively.

Correctness of a blind MAC scheme requires that for all k ∈ N and for all M ∈
{0, 1}∗, with probability 1 it holds that StUser = halt and Vf(K ,M, τ) = acc

whenever K
$

← Kg(1k) and (MTag,StTag, τ,StUser)
$

← [[[Tag(K)↔ User((1k,M)]]].

Security of blind MACs. Analogously to the security of blind signatures, the
security of a blind MAC scheme consists of an unforgeability and a blindness
requirement. The game defining unforgeability works as follows. The experiment

generates a fresh key K
$

← Kg(1k), and runs the adversary A on input 1k. The
adversary can interact in sequential sessions with a tagging oracle that runs the
Tag algorithm initialized with key K . At the end of its execution, A outputs m

message-tag pairs. The adversary wins the game if all messages are different, all
tags are valid under key K , and m > n, where n is the number of completed
tagging sessions during the attack. We give a more formal description of the
definition below.

Definition 2 [Unforgeability of a blind MAC scheme.] Let BMAC =
(Kg,User,Tag,Vf) be a blind message authentication scheme. Let k ∈ N, and
let A be a forger with access to the tagging oracle. Consider the following exper-
iment.

Experiment Expomu-sa
BMAC , A(k):

K
$

← Kg(1k) ; n← 0

{(M1, τ1), . . . , (Mm, τm)}
$

← A(1k : Tag(·))
If Vf(K ,Mi, τi) = acc for all 1 ≤ i ≤ m

and m > n and Mi 6= Mj for all 1 ≤ i < j ≤ m

then return 1 else return 0,

where A’s queries to the tagging oracle are answered as follows:

Oracle Tag(Min):
If Min = ⊥ then StTag ← K ; Mout ← ⊥

else (Mout,StTag)
$

← Tag(Min,StTag[s])
If StTag = halt then n← n + 1
Return Mout

4 We need to pass 1k as a parameter to the User algorithm, because otherwise it would
no longer be a polynomial-time algorithm if the message is of logarithmic length.
Moreover, since the user does not know the key itself, it is reasonable to give it 1k

so that at least it can check whether the tagger is using a key of the correct size.

8 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

The omu-sa advantage of A in breaking BMAC is defined as the probability that
the above experiment returns 1:

Advomu-sa
BMAC , A(k) = Pr

[

Expomu-sa
BMAC , A(k) = 1

]

,

and BMAC is said to be one-more unforgeable under sequential attacks (omu-sa-
secure) if the advantage Advomu-sa

BMAC , A(k) is a negligible function in the security

parameter k for all adversaries A with time complexity polynomial in k.

In the blindness game, the experiment chooses a random bit b and gener-

ates a fresh key K
$

← Kg(1k). On input (1k,K), the adversary A first outputs
two messages M0,M1. The adversary then sequentially interacts with two User

sessions, playing the role of the tagger. If b = 0, then the first user session is
initialized with message M0, and the second with M1; if b = 1, then the first
session is initialized with message M1, and the second with M0. If both User al-
gorithms accept, the adversary gets to see both resulting tags τ0, τ1 for messages
M0,M1. The adversary has to guess the value of b.

We stress that the experiment does not enforce the resulting tags to be valid
under key K . While we could include such restriction in the formal security
notion, it would be out of touch with reality: the secret key K is not known to
the users, so there is nobody to enforce this restriction in the real world. In fact,
as we will see in the next section, it is exactly this lack of verifiability of tags
that plays a central role in the proof of impossibility of blind MACs. We give a
formal blindness definition below.

Definition 3 [Blindness of a blind MAC scheme.] Let BMAC = (Kg,User,

Tag,Vf) be a blind message authentication scheme. Let k ∈ N, and let A be an
adversary. Consider the following experiment.

Experiment Expblind-sa
BMAC , A (k):

b
$

← {0, 1} ; K
$

← Kg(1k)

((M0,M1),StA)
$

← A(ε, (1k,K))

(MA,StA, τb,Stb)
$

← [[[A(StA)↔ User((1k,Mb))]]]

(MA,StA, τ1−b,St1−b)
$

← [[[A(StA)↔ User((1k,M1−b))]]]
If St0 = fail or St1 = fail then τ ← fail else τ ← (τ0, τ1)

d
$

← A(τ,StA)
If b = d then return 1 else return 0

The blind-sa advantage of A in breaking BMAC is defined as

Advblind-sa
BMAC , A (k) = 2 · Pr

[

Expblind-sa
BMAC , A (k) = 1

]

− 1

and BMAC is said to be blind under sequential attacks (blind-sa-secure) if the
advantage Advblind-sa

BMAC , A (k) is a negligible function in the security parameter k for

all adversaries A with time complexity polynomial in k.

On the (Im)possibility of Blind Message Authentication Codes 9

4 Impossibility of Blind MACs

In this section, we show that blind MAC schemes simultaneously satisfying the
one-more unforgeability and blindness requirements cannot exist. We do so by
demonstrating a universal blindness adversary A and a universal forger F so
that for any candidate scheme, one of them always has a non-negligible chance
of success.

Theorem 4 [Secure blind MAC schemes do not exist.] Let BMAC be a
blind MAC scheme. Either BMAC is one-more forgeable under sequential attacks,
or it is not blind under sequential attacks.

Proof (Theorem 4). We define an adversary A breaking the blindness of BMAC
and an adversary F breaking the one-more unforgeability of BMAC , both under
sequential attacks, so that

Advblind-sa
BMAC , A (k) + Advomu-sa

BMAC , F(k) = 1 ,

from which the theorem follows.
The key idea in constructing A is from the observation that, in a blind MAC

scheme, the user has no way of telling under which key a tag is computed. Our
adversary exploits this fact by using two different keys to generate the tags for
the two user sessions. Then, it only needs validate one of the final message-
tag pairs to determine during which user session the tag was computed. The
possibility that a tag computed with the second key is also valid under the first
key, or that both keys happen to be identical, is ruled out by the existence of a
forger F that is successful in exactly these cases.

We now present both adversaries in more detail. Algorithm A, on initial state

(1k,K), generates a second key K ′
$

← Kg(1k) and outputs challenge messages
M0 = 0 and M1 = 1. (In fact, any two distinct challenge messages would do.) It
interacts with the first User algorithm by honestly running Tag(K), and with the
second by running Tag(K ′). Since both K and K ′ are keys generated by the Kg

algorithm, the correctness requirement for BMAC implies that neither of the user
sessions fails, and hence that A gets back tags (τ0, τ1). If Vf(K ,M0, τ0) = acc,
the adversary returns d = 0, else it returns d = 1.

The forger F works as follows: on input 1k, it generates a fresh random key

K ′
$

← Kg(1k). It simulates an interaction (M,StTag, τ,StUser)
$

← [[[Tag(K ′) ↔
User((1k,M0))]]] in which a tagger uses key K ′ to tag message M0 = 0 (or
whichever message M0 algorithm A used above). It then outputs {(M0, τ)} as
its single forgery without making any tagging oracle call.

Now, we analyze the success probability of A and F. From Definition 3,

Advblind-sa
BMAC , A (k) = 2 · Pr

[

Expblind-sa
BMAC , A (k) = 1

]

− 1

= Pr
[

Expblind-sa
BMAC , A (k) = 1 | b = 1

]

+ Pr
[

Expblind-sa
BMAC , A (k) = 1 | b = 0

]

− 1

= Pr
[

Expblind-sa
BMAC , A (k) = 1 | b = 1

]

= 1−Advomu-sa
BMAC , F(k)

10 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

The second equality follows easily from simple algebra and the fact that b is a
randomly chosen bit. The third equality follows from the correctness requirement
of BMAC : if b = 0, then during the first user session, A tags message M0 with
key K . Hence, verification of the resulting tag with key K must always succeed,
making A output the correct guess d = 0 with probability 1. Looking closely at
the probability on the third line, we see that it is one minus the probability that
a tag τ0 obtained from an interaction [[[Tag(K ′) ↔ User((1k,M0))]]] also verifies
correctly under an independently generated key K . This however is exactly the
success probability of our forger F, leading to the last equation, which concludes
the proof.

5 Blind MACs for State-Sharing Users

The attack in Section 4 is due to the fact that, unlike in the case of blind
signatures, the user has no public key based on which it can check whether the
tagger is behaving honestly, and in particular, whether he’s using the correct
key to tag the message. The attack only holds however for user sessions that are
completely isolated from each other, and does not exclude the existence of blind
MACs when user sessions can communicate with one another. Depending on the
application, it may be unrealistic to assume that all users are connected through
secure communication channels (or even know of each other’s existence), but it
may be more reasonable to assume that small groups of user sessions can share
some common state information. We ask ourselves whether a weaker form of
blindness is achievable, where anonymity is guaranteed among messages tagged
in state-sharing user sessions. For applications like electronic cash and voting,
this would provide a rather limited form of anonymity. In Pinkas’ two-party
computation protocol however [14], there is only one user (the circuit evaluator),
so it is perfectly safe to assume that the different user sessions share common
state information.

In the following, we describe a provably secure construction of a blind MAC
scheme in the state-sharing users setting. The main purpose of the construction,
however, is to prove the existence of blind MACs in this restrictive setting: it
is based on an underlying blind signature scheme, and hence does not achieve
the performance benefits that were the original motivation for blind MACs.
The secret key of the blind MAC scheme contains both the public and the
private key of the underlying blind signature scheme. In the first move of the
tagging protocol, the tagger sends the public key to the user. If the common
state information is empty, then the user stores this public key in the common
state information; otherwise, the user compares the public key to the one that
is stored in the common state, and rejects if the keys are different. The rest
of the protocol is identical to that of the blind signature scheme. To prove the
security of the construction, we introduce a new (and actually, more natural)
blindness notion for blind signatures that we call dishonest-key blindness, where
the public key can be maliciously constructed by the adversary, rather than
being honestly generated through the key generation algorithm. Then, we show

On the (Im)possibility of Blind Message Authentication Codes 11

that Chaum’s blind signature scheme with a prime encryption exponent whose
value is larger than the RSA modulus is (unconditionally) dishonest-key blind.
Together with the known fact that this scheme is one-more unforgeable in the
random oracle model under the one-more RSA assumption [4], this implies that
a blind MAC scheme with state-sharing users exists in the random oracle model
if the one-more RSA-inversion problem [4] is hard.

Syntax and security of blind MACs with state-sharing users. We
model the common state information as a third input string CSt that is given
to the User algorithm, and that the user can update through a third output
string CSt ′. We add this common state as an input to the user in the blindness
experiment in Definition 1. The common state is initialized to ε and maintained
between both user sessions. The rest of the experiment remains the same. The
unforgeability notion as stated in Definition 2 remains unchanged.

A construction based on blind signatures. The main idea for our blind
MAC construction is to store the public key for the base blind signature scheme
in the users’ common state information. Then, we use the algorithms of the blind
signature scheme in a natural way.

Construction 5 [A blind MAC scheme for state-sharing users.] Let
BS = (Kgs,Users,Sign,Vfs) be a blind signature scheme. We associate to it
a blind MAC scheme BMAC = (Kgm,Userm,Tag,Vfm) as follows:

– On input 1k, the key generation algorithm Kgm runs Kgs(1
k) to obtain a

key pair (pk , sk), sets K ← (pk , sk) and returns K .
– On input K , the tagging algorithm Tag starts the interaction with Userm

by parsing K as (pk , sk), sends pk to Userm, runs Sign on initial state sk
interacting with Userm to completion. It sets its state to whatever Sign does.

– On inputs an initial state 1k, a message M , and an initial shared-state CSt ,
the algorithm Userm first receives pk from Tag. If CSt = ε, then Userm sets
CSt ← pk . Otherwise, it sets pk ← CSt and runs Users on the initial state
(pk ,M) interacting with Tag until the interaction completes. It sets its state
and output to those of Users.

– On input a key K , a message M , and a MAC value τ , the algorithm Vfm

parses K as (pk , sk), and returns Vfs(pk ,M, τ).

Dishonest-key blindness for blind signatures. Before stating the security
of our blind MAC construction, we briefly describe here the concept of dishonest-
key blindness, which is needed to prove its security. Recall that the standard
blindness notion for blind signatures assumes that the adversary is given a key
pair generated properly through the key generation algorithm. This however does
not cover attacks where the signer creates a public key in a special, malicious
way that allows him to break the blindness of the scheme. The dishonest-key
blindness notion that we propose gives the adversary more power by letting
it dictate the public key to be used. This public key need not be generated
by the Kgs algorithm, nor does the adversary need to know the corresponding
secret key. The adversary gets as only input 1k, and outputs challenge messages

12 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

M0,M1 along with the public key pk . The rest of the experiment is unchanged:
the adversary engages in two sequential User sessions that are initialized with
(1k, pk ,M0) and (1k, pk ,M1), the order depending on the experiment’s choice
for bit b.

It is based on this stronger security requirement of the underlying blind
signature scheme that we construct a secure blind MAC in the state-sharing
model. Let Advdk-blind-sa

BS , A (k) be the advantage of an adversary A in winning the
above game against BS in a sequential attack. We say that BS is dk-blind-sa-
secure if this advantage is a negligible function in k for all polynomial-time
algorithms A. We refer to Appendix A for a formal definition of dishonest-key
blindness.

Security. The following theorem states that, if the underlying blind signature
scheme is one-more unforgeable and dishonest-key blind, then the resulting blind
MAC scheme is secure.

Theorem 6 If a blind signature scheme BS is one-more unforgeable and dis-
honest-key blind under sequential attacks, then the blind MAC scheme with
state-sharing users BMAC associated to BS as per Construction 5 is one-more
unforgeable and blind under sequential attacks.

Theorem 6 follows directly from the following two lemmas.

Lemma 7 If a blind signature scheme BS is omu-sa secure, then the blind MAC
scheme with state-sharing users BMAC associated to BS as per Construction 5
is also omu-sa secure.

Lemma 8 If a blind signature scheme BS is dk-blind-sa secure, then the blind
MAC scheme with state-sharing users BMAC associated to BS as per Construc-
tion 5 is blind-sa-secure.

Proof (Lemma 7). We prove the lemma via a standard reduction, namely, we
assume the existence of a forger Fm mounting an attack against BMAC , and
construct a forger Fs mounting an attack against BS so that, if the success
probability of the former is non-negligible, then so is that of the latter. The
idea is for Fs to run Fm using its signing oracle to simulate Fm’s tagging oracle
Tag(·). Since the only difference between a tagger-user interaction in BMAC and
a signer-user interaction in BS is in the public key that the tagger sends to the
user as the first message, this simulation can be done perfectly. Thus, if Fm is
able to produce one more valid message-tag pair than the number of finished
interactive sessions with its tagging oracle, then so can Fs with respect to its
signing oracle.

Now we provide more details of how Fs works. Let BS = (Kgs,Users,Sign,

Vfs) and let BMAC = (Kgm,Userm,Tag,Vfm). On input (1k, pk), it runs Fm(1k).
For each tagging session that Fm runs, Fs starts the interaction by sending pk
to Fm as the first message, then simply relays messages between Fm and its own
signing oracle. When Fm eventually halts, Fs outputs whatever Fm does.

On the (Im)possibility of Blind Message Authentication Codes 13

Forger Fs perfectly simulates the environment for Fm. To see this, let pk be
Fs’s input public key, and let sk be the matching secret key used by its signing
oracle. Notice that from the definition of BMAC in Construction 5, each inter-
action in the transcript of messages between the tagger Tag(pk , sk) and a user
Userm(1k,M) is composed of pk followed by other messages generated through
the interaction between the signer Sign(sk) and Users(pk ,M) for any message
M . Since all Fs does is to first send pk and then to relay messages between the
signing oracle and Fm (who is acting in the role of Userm), Fs simulates Fm in
the exact same environment as that of the experiment in Definition 2.

Furthermore, let (M1, σ1), . . . , (Mm, σm) be the outputs of Fs. By definition
of Vfm, it is the case that, for all 1 ≤ i ≤ m, Vfm((pk , sk),Mi, σi) = acc if and
only if Vfs(pk ,Mi, σi) = acc. Thus, if Fm’s outputs are valid message-tag pairs
under K = (pk , sk), then Fs’s outputs are also valid message-signature pairs
under pk . Since Fs interacts with its oracle the same number of sessions as Fm

does, if Fm uses strictly fewer sessions than the number of output pairs, then so
does Fs. Thus, if Fm succeeds, then so does Fs, or

Advomu-sa
BMAC , Fm

(k) ≤ Advomu-sa
BS , Fs

(k) ,

which proves the lemma.

Proof (Lemma 8). We prove the lemma via a standard reduction, namely, we
assume the existence of an adversary Am attacking the blindness of BMAC , and
then construct an adversary As attacking the dishonest-key blindness of BS so
that, if the success probability of the former is non-negligible, then so is that
of the latter. The idea is for As to first run Am, and to output the public key
contained in the first message of Am’s first user interaction as the public key
with which both Users sessions should be run. The rest of the messages are then
relayed faithfully between Am and the Users sessions. In Am’s second Userm
interaction, the first outgoing message from Am is simply dropped.

Now we provide more details of how As works. We emphasize that As oper-
ates in the dishonest-key model. On input 1k, the adversary As generates a key
pair (pk , sk) via Kg(1k), runs Am(1k, (pk , sk)), obtains Am’s challenge messages
M0,M1, and waits until Am outputs its first outgoing message pk ′ as part of a
Userm session. Then, As outputs pk ′ as the public key for the users along with
the same challenge messages M0,M1. Adversary As relays messages faithfully
between Users and Am (who is acting in the role of the tagger) for the rest of the
interaction. The interaction with the second user is similar: As drops the first
message from Am and simply relays following messages to and from its second
Users session. Finally, when given σ = (σ0, σ1) or fail, As forwards σ to Am

and outputs Am’s guess d as its own.
We first argue that As simulates Am in the same environment as that in

Definition 3. Consider the three phases in Am’s attack: starting, interacting with
users, and guessing. In the first phase, As starts Am with a legitimate key pair
which is indeed what Am expects. Since, by definition of BMAC , Users outputs
whatever Userm outputs, the tags that As gives to Am in the last phase are
also correctly distributed. For the second phase, recall that As drops the first

14 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

message received from Am and relays messages between Users and Am. Thus, the
messages relayed to Am are exactly what Am would see in its role as a tagger.
Therefore, this phase also follows the correct distribution.

Now suppose that Am succeeds. We argue that As does too. Let pk ′ be the
first outgoing message that Am outputs to start the session with the “first”
user. Let b ∈ {0, 1} such that interaction [[[As ↔ Users(pk

′,Mb)]]] starts first.
Recall that As simulates Userm(1k, ·) using Users(pk

′, ·). This means that the
interaction [[[Am ↔ Userm(pk ′,Mb)]]] also starts first. Since As outputs the same
answer as Am, As guess correctly whenever Am does. So we have

Advblind-sa
BMAC , Am

(k) ≤ Advdk-blind-sa
BS , As

(k) ,

which concludes the proof.

Existence of dishonest-key blind signature schemes. We describe a
variant of Chaum’s blind signature scheme here. Theorem 9 below states that
this scheme is one-more unforgeable and dishonest-key blind. Recall that in
Chaum’s RSA-based blind signature scheme, the public key is (N, e) and the
private key is (N, d) where N is an RSA modulus, e is an RSA encryption
exponent, and d is the corresponding RSA decryption exponent. On inputs a
public key (N, e) and a message M , the user computes M ← re ·H(M) mod N ,
where r is a random value in Z

∗

N and H : {0, 1}∗ → Z
∗

N is a public hash function,

then submits M to the signer. The signer then responds with σ ← M
d

mod N .
Finally, the user computes and outputs σ ← r−1 ·σ mod N . A message-signature
pair (M,σ) is valid if and only if σe ≡ H(M) mod N . The variant that we are
interested in is Chaum’s scheme with the additional requirements that e is prime
and that e > N . The user checks that these requirements hold before starting
the protocol, and checks that σ ∈ Z

∗

N and σe ≡ H(M) mod N at the end of
the protocol. If any of these checks fail, the User algorithm terminates in a fail

state. We note that this check can be done in deterministic polynomial time [3].

Theorem 9 [Security of modified Chaum scheme.] Let H : {0, 1}∗ → Z
∗

N

be a random oracle, and let BS be Chaum’s blind signature scheme with prime
encryption exponent e > N . Then, BS is one-more unforgeable under sequential
attacks in the random oracle model assuming that the one-more-RSA-inversion
problem is hard. Furthermore, BS is unconditionally dishonest-key blind under
sequential attacks.

Proof (Theorem 9). Bellare et al. proved in [4] that Chaum’s scheme is one-
more unforgeable in the random oracle model assuming that the one-more-RSA-
inversion problem is hard. Their proof does not make additional assumptions
about the encryption exponent e. Thus, the same security result holds for our
variant of Chaum’s scheme.

Now we prove the blindness result. Let A be a dishonest-key blindness adver-
sary. Over the course of the experiment, A’s inputs are the incoming messages
from the two users and the two resulting signatures. Consider the two worlds

On the (Im)possibility of Blind Message Authentication Codes 15

dictated by which message is signed first (i.e. b = 0 or b = 1) and regard each
input of A as a random variable. We argue that each of these random variables
has the same distribution in both worlds. We consider them one by one. First,
we consider an incoming message M , which is computed as re · H(M) mod N

where r is a random value in Z
∗

N . Since e is prime and e > N , we have that
gcd(e, φ(N)) = 1 where φ(N) is the Euler’s totient function. Thus, the map
f : Z

∗

N → Z
∗

N defined as f(x) = xe mod N is a permutation on Z
∗

N . Conse-
quently, given that r is a random value in Z

∗

N , we have that re is also a random
value in Z

∗

N . Thus, so is M . This is true regardless of the value of b. Therefore,
the random variable M follows the same distribution in both worlds, namely a
uniform distribution over Z

∗

N .
Second, we consider a signature σ resulting from A’s interaction with a user.

At the end of the protocol, the user verified that σ is an element of Z
∗

N such
that σe ≡ H(M) mod N . Since f(x) is a permutation over Z

∗

N , there is only
one such element σ. Therefore, σ is uniquely determined by (N, e,M), and in
particular does not contain any information about during which session it was
created. Thus, BS is dishonest-key blind.

As a corollary, it follows that blind MAC schemes with state-sharing users that
are at the same time one-more unforgeable (omu-sa secure) and blind (blind-sa
secure) exist in the random oracle model if the one-more RSA-inversion problem
is hard.

6 Parallel Attacks

We note that all our results can be extended to parallel attacks, i.e. attacks
where the adversary can interact with signers, taggers or users in an arbitrarily
interleaved way. We refer to the full version [1] for notation and security notions
under parallel attacks, and simply summarize the results here.

Since any blind MAC scheme that is secure under parallel attacks is also
secure under sequential attacks, our impossibility result of Theorem 4 directly
implies that secure blind MACs under parallel attacks do not exist either.

In the state-sharing users setting, the result of Theorem 6 easily extends to
parallel attacks: if the underlying blind signature scheme is one-more unforgeable
and dishonest-key blind under parallel attacks, then the blind MAC scheme of
Construction 5 is one-more unforgeable and blind under parallel attacks. More-
over, since the signing protocol in Chaum’s scheme only has two moves, security
under sequential and parallel attacks are equivalent, and the result of Theorem 9
holds for parallel attacks as well.

7 Future Work

In forthcoming work, we will further explore the notion of dishonest-key blind-
ness for other schemes than the modified Chaum scheme presented in Section 5.
The latter relies on random oracles and the one-more RSA-inversion assumption;

16 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

we will investigate which other schemes satisfy the stronger notion, and whether
a general transformation exists that converts any honest-key blind signature
scheme into a dishonest-key blind signature scheme.

As previously stated, the sole purpose of the construction in Section 5 is to
demonstrate the existence of blind MAC schemes in the setting in which the
users share a common state information. Finding efficient constructions in this
setting is left as an open problem. Also, one could investigate the existence of
blind MACs in other models, such as a model in which users can collude with a
cheating signer, or one in which all users have access to a verification oracle.

8 Acknowledgements

We would like to thank Mihir Bellare and the anonymous reviewers for their
valuable suggestions. The first and third author were supported in part by the
French RNRT Project Crypto++ and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT. The third author is a
Postdoctoral Fellow of the Research Foundation – Flanders (FWO-Vlaanderen),
and was supported in part by the Flemish Government under GOA Mefisto
2006/06 and Ambiorix 2005/11, and by the European Commission through the
IST Project PRIME.

References

1. Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the
(im)possibility of blind message authentication codes. Full version of current paper.
Available from authors’ web pages.

2. Masayuki Abe. A secure three-move blind signature scheme for polynomially
many signatures. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-

CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 136–151,
Innsbruck, Austria, May 6–10, 2001. Springer-Verlag, Berlin, Germany.

3. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. http:

//www.cse.iitk.ac.in/users/manindra/primality.ps, August 2002.

4. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The one-more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. Journal of Cryptology, 16(3):185–215, 2003.

5. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003: 6th International Workshop on Theory and Practice in Public Key

Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 31–46,
Miami, USA, January 6–8, 2003. Springer-Verlag, Berlin, Germany.

6. Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signa-
tures without random oracles. In Carlo Blundo and Stelvio Cimato, editors, SCN

04: 4th International Conference on Security in Communication Networks, Lecture
Notes in Computer Science, pages 134–148, Amalfi, Italy, September 8–10, 2005.
Springer-Verlag, Berlin, Germany.

On the (Im)possibility of Blind Message Authentication Codes 17

7. David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology –

CRYPTO’82, pages 199–203, Santa Barbara, CA, USA, 1983. Plenum Press, New
York, USA.

8. David Chaum. Blind signature system. In David Chaum, editor, Advances in

Cryptology – CRYPTO’83, page 153, Santa Barbara, CA, USA, 1984. Plenum
Press, New York, USA.

9. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi
Goldwasser, editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture

Notes in Computer Science, pages 319–327, Santa Barbara, CA, USA, August 21–
25, 1990. Springer-Verlag, Berlin, Germany.

10. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Jennifer Seberry and Josef Pieprzyk, editors,
Advances in Cryptology – AUSCRYPT ’ 92, volume 718 of Lecture Notes in Com-

puter Science, pages 244–251. Springer-Verlag, Berlin, Germany, 1993.
11. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

12. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures
(Extended abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology –

CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 150–164,
Santa Barbara, CA, USA, August 17–21, 1997. Springer-Verlag, Berlin, Germany.

13. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael Roe, ed-
itors, Security Protocols, 5th International Workshop, Paris, France, April 7-9,

1997, Proceedings, volume 1361 of Lecture Notes in Computer Science, pages 25–
35. Springer-Verlag, Berlin, Germany, 1998.

14. Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, Advances

in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer

Science, pages 87–105, Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin,
Germany.

15. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

16. Berry Schoenmakers. Personal Communication, August 2005.
17. Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on

Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–5,
1982. IEEE Computer Society Press.

A Formal Definition of Dishonest-Key Blindness

The concept of dishonest-key blindness for blind signature schemes is an ex-
tension of the classical notion of blindness in which the adversary is allowed to
choose the public key used by the user algorithm when trying to break the blind-
ness of the scheme. In particular, in the experiment defining this new notion, no
key generation is performed and no key pair is given to the adversary as input to
its first phase. Instead, the adversary outputs the public key of its choice along
with the challenge messages at the end of its first stage. It is this public key that
is given as input to the users during the second phase of the experiment defining
dishonest-key blindness.

18 Michel Abdalla, Chanathip Namprempre, and Gregory Neven

Definition 10 [Dishonest-key blindness of a blind signature scheme.]
Let BS = (Kg,User,Sign,Vf) be a blind signature scheme. Let k ∈ N, and let A

be an adversary. Consider the following experiment.

Experiment Expdk-blind-sa
BS , A (k):

b
$

← {0, 1}

((M0,M1, pk),StA)
$

← A(ε, 1k) // A outputs pk of its choice

// both users use pk output by A during the attack

(MA,StA, τb,Stb)
$

← [[[A(StA)↔ User((pk ,Mb))]]]

(MA,StA, τ1−b,St1−b)
$

← [[[A(StA)↔ User((pk ,M1−b))]]]
If St0 = fail or St1 = fail then τ ← fail else τ ← (τ0, τ1)

d
$

← A(τ,StA)
If b = d then return 1 else return 0

The dk-blind-sa-advantage of A in breaking BS is defined as

Advdk-blind-sa
BS , A (k) = 2 · Pr

[

Expdk-blind-sa
BS , A (k) = 1

]

− 1 ,

and BS is said to be dishonest-key blind under sequential attacks or dk-blind-sa-
secure if Advdk-blind-sa

BS , A (k) is a negligible function in the security parameter k

for all adversaries A with time complexity polynomial in k.

