
An extended abstract of this paper appears in Christian Cachin, editor, International Colloquium on

Automata, Languages and Programming – ICALP 2007, Volume ?? of Lecture Notes in Computer
Science, pages ??–??, Wroclaw, Poland, July 9–13, 2007. Springer-Verlag, Berlin, Germany. This is the
full version.

Unrestricted Aggregate Signatures

Mihir Bellare1 University of California San Diego

mihir@cs.ucsd.edu, http://www-cse.ucsd.edu/users/mihir

Chanathip Namprempre2 Thammasat University

nchanath@engr.tu.ac.th, http://chanathip.ee.engr.tu.ac.th

Gregory Neven3 Katholieke Universiteit Leuven

Gregory.Neven@esat.kuleuven.be, http://www.neven.org

June 2006

Abstract

Secure use of the BGLS [7] aggregate signature schemes is restricted to the aggregation of distinct
messages (for the basic scheme) or per-signer distinct messages (for the enhanced, prepend-public-key
version of the scheme). We argue that these restrictions preclude interesting applications, make usage
of the schemes error-prone and are generally undesirable in practice. Via a new analysis and proof, we
show how the restrictions can be lifted, yielding the first truly unrestricted aggregate signature scheme.
Via another new analysis and proof, we show that the distinct signer restriction on the sequential
aggregate signature schemes of [18] can also be dropped, yielding an unrestricted sequential aggregate
signature scheme. Finally, we present variants of these schemes with tight security reductions.

1 Supported by NSF grants CNS-0524765 and CNS-0627779, and a gift from Intel Corporation.
2 Supported by the Thailand Research Fund.
3 Postdoctoral Fellow of the Research Foundation Flanders, supported in part by the Concerted Research Action

Ambiorics 2005/11 of the Flemish Government and the European Commission through the IST Programme under Contract
IST-2002-507932 ECRYPT.

1 Introduction

Aggregate signatures. An aggregate signature (AS) scheme [7] is a digital signature scheme with the
additional property that a sequence σ1, . . . , σn of individual signatures —here σi is the signature, under
the underlying base signature scheme, of some message mi under some public key pk i— can be condensed
into a single, compact aggregate signature σ that simultaneously validates the fact thatmi has been signed
under pk i for all i = 1, . . . , n. There is a corresponding aggregate verification process that takes input
(pk1,m1), . . . , (pkn,mn), σ and accepts or rejects. Aggregation is useful to reduce bandwidth and storage,
and is especially attractive for mobile devices like sensors, cell phones, and PDAs where communication
is more power-expensive than computation and contributes significantly to reducing battery life.

Schemes. Boneh, Gentry, Lynn, and Shacham [7] present an aggregate signature scheme based on the
BLS signature scheme [9]. We call it AS -1 and represent it succinctly in the first row of Table 1. AS -1 ,
however, has some limitations. As the table shows, the aggregate verification process, on inputs (pk1,m1),
. . . , (pkn,mn), σ, rejects if the messages m1, . . . ,mn are not distinct. The restriction is crucial because,
without it, as shown in [7], the scheme is subject to a forgery attack. The consequence, however, is to
restrict the ability to aggregate to settings where the messages signed by the signers are all different.
BGLS recognize this limitation and suggest a workaround. Specifically, they say: “It is easy to ensure
the messages are distinct: The signer simply prepends her public key to every message she signs ...” [7,
Section 3.2]. They stop short of specifying a scheme in full, but since it is clearly their intention to
“reduce to the previous case,” our understanding is that they are advocating the modified scheme in
which the signature of a message m under pk is the BLS signature of the enhanced message M = pk‖m
under pk while aggregate verification is done by applying the aggregate verification procedure of AS -1 to
(pk1, pk1‖m1), . . . , (pkn, pkn‖mn), σ. However, if so, in this scheme, which we call AS -2 , the aggregate
verification process will reject unless the enhanced messages pk1‖m1, . . . , pkn‖mn are distinct. (Why?
Because the aggregate verification process of AS -1 rejects unless the messages are distinct, and the role of
the messages is now played by the enhanced messages.) The consequence is that the ability to aggregate
is restricted to settings where the enhanced messages signed by the signers are all different. That is, the
limitations have been reduced, but not eliminated.

Our result. We ask whether there exists a truly unrestricted proven-secure aggregate signature scheme.
Namely, there should be no distinctness-based restriction of any kind, whether on messages or enhanced
messages. We show that the answer is yes. Our result is a new, direct analysis of the security of enhanced-
message signature aggregation which shows that the distinctness condition in the aggregate verification
process of AS -2 —namely that this process rejects if any two enhanced messages are the same— can be
dropped without compromising security. In other words, an unrestricted scheme can be obtained by the
natural adaptation of AS -2 in which the distinctness condition in the verification is simply removed and
all else is the same. This scheme, which we denote AS -3 , is summarized in the last row of Table 1. The
fact that AS -3 is very close to AS -2 is a plus because it means existing implementations can be easily
patched.

We clarify that the security of AS -3 is not proved in [7]. They prove secure only AS -1 . The security
of AS -2 is a consequence, but the security of AS -3 is not. What we do instead is to directly analyze
security in the case that signatures are on enhanced messages. Our analysis explicitly uses and exploits
the presence of the prepended public keys to obtain the stronger conclusion that AS -3 (not just AS -2) is
secure.

Motivation. The limitation of AS -2 —namely that aggregation is restricted to settings where no two
enhanced messages are the same— may seem minor, because all it says is that a set of signatures to
be aggregated should not contain duplicates, meaning multiple signatures by a particular signer of a
particular message. However, as we now explain, there are several motivations for schemes like AS -3
where aggregation is possible even in the presence of duplicates.

Consider a sensor network deployed in a remote area, for example, an environment monitoring network
such as the tsunami early warning system already in operation in the Indian Ocean [15]. The sensors
periodically record measurements from the environment and send them to a monitoring center. In appli-
cations where integrity is important (say, to prevent attackers from raising a false alarm that a tsunami
is coming), each sensor node must sign its data. The center aggregates these data and the signatures

1

Scheme Sign Aggregate verification process accepts iff

AS -1 [7] H(m)x e(σ, g) =
Q

n

i=1
e(H(mi), g

xi) and m1, . . . , mn all distinct

AS -2 [7] H(gx‖m)x e(σ, g) =
Q

n

i=1
e(H(gxi‖mi), g

xi) and

g
x1‖m1, . . . , g

xn‖mn all distinct

AS -3 H(gx‖m)x e(σ, g) =
Q

n

i=1
e(H(gxi‖mi), g

xi)

Table 1: The aggregate signature schemes we discuss. Here e: G1 × G2 → GT is a bilinear map, g is
a generator of G2 known to all parties, and H: {0, 1}∗ → G1 is a hash function. The second column
shows the signature of a message m under public key gx, generated using secret key x. In all cases, a
sequence of signatures is aggregated by simply multiplying them in G1. The third column shows under
what conditions the aggregate verification algorithm accepts σ as a valid aggregate signature of messages
m1, . . . ,mn under public keys gx1 , . . . , gxn respectively.

to save storage. (The schemes discussed here permit on-line aggregation in which one can maintain a
current aggregate and aggregate into it a received signature.) However, environmental measurements
can certainly repeat over time! Indeed, especially in stable conditions, we would expect frequent repeats.
Thus, a single signer (sensor) may sign the same data (measurement) many times. In general, whenever
the data being signed is drawn from a small space, not just messages, but even enhanced messages can
repeat and an unrestricted aggregate signature scheme is necessary.

Perhaps an even more important reason to prefer unrestricted schemes is that they are less likely to
be misused or to result in unexpected errors. An application designer contemplating using AS -2 must
ask herself whether, in her application, enhanced messages might repeat. This may not only be hard to
know in advance, but might also change with time. (Experience has repeatedly shown that once a piece
of cryptography is deployed, it is used for purposes or applications beyond those originally envisaged.)
With an unrestricted scheme, the application designer is freed from the need to worry about whether
the setting of her application meets the restrictions, reducing the chance of error. In general, application
designers and programmers have a hard enough time as it is to make error-free use of cryptography.
Asking them to understand message distinctness restrictions and anticipate whether their application
meets them is an added burden and one more place where things can go wrong.

Possible workarounds. Various ways to get around message distinctness restrictions may come to
mind, but these workarounds either do not work or tend to be more complex or restrictive than direct
use of an unrestricted scheme. For example, one could have the verifier drop from its input list (pk1,m1),
. . . , (pkn,mn), σ any pair pk i,mi that occured previously in the list, but then, assuming σ was a correct
aggregate signature of the given list, it will not be a correct aggregate signature for the truncated list, and
verification will fail. Another possibility is that the aggregator refrain from including in the aggregate
any signature corresponding to a public key and message whose signature is already in the aggregate.
But aggregation may be done on-line, and the aggregator may know only the current aggregate and the
incoming signature, and have no way to tell whether or not it is a duplicate. Nonces (timestamps or
sequence numbers) could be added to messages to render them unique, but this would complicate the
application and increase cost.1 Being able to use AS -3 without any worries about signature or message
replication is simpler, easier, and more practical.

Results for SASs. A sequential aggregate signature (SAS) scheme [18] permits a more restrictive kind
of aggregation in which the signers must participate in the process and use their secret keys. Imagine
the signers forming a chain. In step i, the i-th signer receives from the previous one a current aggregate,
and, using its secret key, it aggregates into this its own signature, passing the new aggregate on to the

1Nonces might be added anyway to prevent replay attacks. If so, well and good. But replay attacks are not always
a concern. In some settings, an adversary might be able to inject bogus data, yet be unable to eavesdrop. Without
eavesdropping, the adversary clearly cannot replay data. This could be true for the ocean sensor scenario we discussed
above.

2

next signer in the chain. The output of the final signer is the aggregate signature. Although clearly less
powerful than general aggregate signature (GAS) schemes —following [8] we now use this term for the
BGLS-type aggregate signatures discussed above in order to distinguish them from SASs— the argument
of [18] is that sequential aggregation is possible for base signature schemes other than BLS or may be
done more cheaply. Specifically, Lysyanskaya, Micali, Reyzin, and Shacham [18] present a SAS scheme
based on certified [5] claw-free trapdoor permutations.

However, the model and schemes of [18] also have some limitations. They require that no public key
can appear more than once in a chain. That is, the signers who are part of a signing chain must be
distinct. But in practice there are many reasons to prefer to allow aggregation even when a particular
signer signs multiple messages, meaning when there are loops in the chain and public keys can repeat.
Certainly, the previously discussed motivations are still true. Namely, in applications like signing in
sensor nets or ad hoc networks, a particular signer (sensor) will be producing many signatures and it
would be convenient to allow these to be aggregated. More importantly, an unrestricted SAS scheme is
more misuse resistant because it does not require the application designer to try to predict in advance
whether or not there will be repeated signers in a prospective chain. But in fact the restrictions in [18] are
even greater than the ones for AS -2 , for they say not only that one cannot aggregate when a particular
signer signs a particular message twice, but that one cannot aggregate even when a particular signer signs
two or more messages that are distinct. This makes the number of excluded applications even larger, for
it is common that a particular signer needs to sign multiple messages.

Our result —analogous to the GAS case— is a new analysis and proof that shows that the restrictions
imposed by [18] on their schemes can be lifted without impacting security (that is, verification can just
drop the condition that one reject if there are repeated public keys, and security is preserved), yielding
unrestricted schemes. Again, that only a minor modification to the scheme is needed is convenient if
existing implementations need to be updated.

Tight reduction results. The security of AS -1 ,AS -2 , and AS -3 is based on the coCDH problem.
However, none of the security reductions —namely, those of [7] in the first two cases and ours in the last—
are tight. By applying the technique of Katz and Wang [16], we obtain an alternative scheme AS -4 with
a tight security reduction to coCDH. When implemented over the same group, AS -1 ,AS -2 ,AS -3 , and
AS -4 all have about the same computational cost, the price for AS -4 being a slightly larger aggregate
signature. (Specifically, one needs one extra bit per constituent signature.) However, due to the tight
reduction, AS -4 is actually more efficient than the other schemes when one compares them at the same
(provable) security level. (Because to achieve a given level of security, AS -4 needs a smaller group than
the other schemes.) We also obtain an analogous result for the SAS case. The statements and the proofs
of our tight reduction results are in Section 5.

Related work. Lu, Ostrovsky, Sahai, Shacham, and Waters [17] present a SAS scheme for which they
can lift the distinct signer restriction, as follows. If a signer wishes to add its signature of a message Mnew

to an aggregate S which already contains its signature Sold on some message Mold, then it removes Sold

from S and then adds back in a signature on the message Mnew‖Mold. However, their scheme is weaker
than the others we have discussed —ours or those of [7, 18]— with regard to some security properties
and also with regard to efficiency. Specifically, [17] uses the certified public key model [1, 6], which
reflects the assumption that signers provide strong ZK proofs of knowledge of secret keys to the CA at
key-registration, an assumption that we, following [7, 18], do not make. Also, in the scheme of [17], public
keys are very large, namely 162 group elements, which is particularly expensive if public keys have to
be transmitted along with signatures. In contrast, other schemes have short public keys. On the other
hand, the proofs of [17] are in the standard model, while ours, following [7, 18], are in the random oracle
model of [3].

Interestingly, in a survey paper, Boneh, Gentry, Lynn, and Shacham [8] present AS -3 , claiming that
the results of [7] prove it secure. However, this appears to be an oversight because, as we have seen, the
results of [7] prove AS -2 secure, not AS -3 . By proving AS -3 secure via our direct analysis, we are filling
the gap and validating the claim of [8]. Shacham’s Ph.D thesis [19] notes that the concrete security of
the reduction of [7] can be slightly improved by replacing messages with enhanced ones, but he does not
claim security of AS -3 .

3

2 Notation and Basic Definitions

Notation and conventions. If x is a string, then |x| is the length of x. We denote by x1‖ · · · ‖xn

an encoding of objects x1, . . . , xn as a binary string from which the constituent objects are uniquely
recoverable. When the objects can be encoded as strings whose length is known from the context, simple

concatenation will serve the purpose. If S is a finite set, then |S| is its size, and s
$

← S means that
s is chosen at random from S. We let e denote the base of the natural logarithm. An algorithm may
be randomized unless otherwise indicated. An adversary is an algorithm. If A is an algorithm then

y
$

← A(x1, x2, . . .) means that y is the result of executing A on fresh random coins and inputs x1, x2,
We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on the indicated inputs, meaning the set
of all strings that have a positive probability of being output by A on inputs x1, x2, We let Maps(D)
denote the set of all functions with domain {0, 1}∗ and range D.

Digital signature schemes. We recall definitions for (standard) signature schemes [13] in the random-
oracle (RO) model [3]. A signature scheme DS = (Kg,Sign,Vf) is specified by three algorithms, the last

deterministic. Via (pk , sk)
$

← Kg, a signer generates its public key pk and matching secret key sk , where

H: {0, 1}∗ → D is a random oracle whose range D is a parameter of the scheme. Via σ
$

← SignH(sk ,m)
the signer can generate a signature σ on a message m. A verifier can run VfH(pk ,m, σ) to obtain a bit,
with 1 indicating accept and 0 reject. The consistency (or correctness) condition is that

Pr
[

VfH(pk ,m, σ) = 1 : (pk , sk)
$

← Kg ; H
$

← Maps(D) ; σ
$

← SignH(sk ,m)
]

= 1

for all messages m ∈ {0, 1}∗. To capture security (unforgeability under chosen-message attack) we define
the advantage of an adversary B as

Advuf-cma
DS (B) = Pr

[

VfH(pk ,m, σ) = 1 : (pk , sk)
$

← Kg ; H
$

← Maps(D) ; (m,σ)
$

← BSignH(sk ,·),H
]

.

To make this meaningful, we only consider adversaries that are legitimate in the sense that they never
queried the message in their output to their sign oracle. We say that DS is (t, qS, qH, ǫ)-secure if no
adversary B running in time at most t, invoking the signature oracle at most qS times and the random
oracle at most qH times, has advantage more than ǫ.

3 Unrestricted General Aggregate Signatures

GAS schemes. A general aggregate signature (GAS) scheme [7] AS = (Kg,Sign,Agg,AVf) consists of
four algorithms, the last deterministic. The key generation and signing algorithms are exactly as for

standard digital signatures. Via σ
$

← AggH((pk1,m1, σ1), . . . , (pkn,mn, σn)), anyone can aggregate a
sequence of public key, message, and signature triples to yield an aggregate signature σ. A verifier can
run AVfH((pk1,m1), . . . , (pkn,mn), σ) to obtain a bit, with 1 indicating accept and 0 reject.

Security. The security requirement of [7] is strong, namely that an adversary find it computationally
infeasible to produce an aggregate forgery involving an honest signer, even when it can play the role of
all other signers, in particular choosing their public keys, and can mount a chosen-message attack on the
honest signer. To capture this, we define the advantage of an adversary A as

Advagg-uf
AS

(A) = Pr
[

AVfH((pk1,m1), . . . , (pkn,mn), σ) = 1
]

where the probability is over the experiment

(pk , sk)
$

← Kg ; H
$

← Maps(D) ; ((pk1,m1), . . . , (pkn,mn), σ)
$

← ASignH(sk ,·),H(pk) .

To make this meaningful, we only consider adversaries that are legitimate in the sense that there must
exist i ∈ {1, . . . , n} such that pk i = pk but A never queried mi to its signing oracle. Thus, the honest
signer here is the one whose keys are pk , sk , and we are asking that the aggregate forgery include some
message and signature corresponding to this honest signer, but the adversary never legitimately obtained
a signature of this message. We say that A (t, qS, nmax, qH, ǫ)-breaks AS if it runs in time at most t,
invokes the signature oracle at most qS times, invokes the hash oracle at most qH times, outputs a forgery

4

containing at most nmax public-key-message pairs, and has advantage strictly greater than ǫ. We say
that AS is (t, qS, nmax, qH, ǫ)-secure if there is no adversary that (t, qS, nmax, qH, ǫ)-breaks AS .

A significant feature of this definition, highlighted in [7], is that A can choose pk1, . . . , pkn as it wishes,
in particular as a function of pk . Unlike [1, 6, 17], there is no requirement that the adversary “know” the
secret key corresponding to a public key it produces, and this makes the system more practical since it
avoids the need for strong zero-knowledge proofs of knowledge [2] of secret keys done to the CA during
key-registration. Our results continue to achieve this strong notion of security.

Bilinear maps and coCDH. Let G1,G2,GT be groups, all of the same prime order p. Let e: G1×G2 →
GT be a non-degenerate, efficiently computable bilinear map, also called a pairing. Let g be a generator
of G2. Note that following [9, 7] we use the asymmetric setting (G1,G2 are not necessarily equal) and
must also assume there exists an isomorphism ψ: G2 → G1. (The first is in order to make signatures as
short as possible, and the second is required for the security proofs.) For the rest of the paper, we regard
G1,G2,GT , e, g, ψ as fixed, globally known parameters, and also let texp denote the time to perform an
exponentiation in G1. We define the advantage of an adversary A in solving the coCDH problem as

Advco-cdh(A) = Pr
[

A(g, ga, h) = ha : h
$

← G1 ; a
$

← Zp

]

.

We say that the coCDH problem is (t′, ǫ′)-hard if no algorithm A running in time at most t′ has advantage
strictly more than ǫ′ in solving it. Note that when G1 = G2, the coCDH problem becomes the standard
CDH problem in G1, whence the name.

The BLS scheme. We recall the BLS standard signature scheme of [9]. The signer chooses a secret key

x
$

← Zp and computes the corresponding public key X ← gx. Let H : {0, 1}∗ → G1 be a random oracle.
The signature of message m is σ = H(m)x, which can be verified by checking that e(σ, g) = e(H(m),X).
Regarding security, we have the following:

Lemma 3.1 [9] If the coCDH problem is (t′, ǫ′)-hard, then the BLS standard signature scheme is (t, qS, qH, ǫ)-
secure for any t, qS, qH, ǫ satisfying

ǫ ≥ e(qS + 1) · ǫ′ and t ≤ t′ − texp(qH + 2qS) . (1)

The GAS schemes we consider. We consider four closely related aggregate signature schemes that
we denote AS -0 ,AS -1 ,AS -2 ,AS -3 . These schemes all use a random oracle H : {0, 1}∗ → G1. The key
generation algorithm of AS -0 and AS -1 picks x at random from Zp, returns x as the secret key, and
X = gx as the public key. The key generation algorithm of AS -2 and AS -3 picks x at random from Zp,
sets X = gx, returns (x,X) as the secret key, and X as the public key. For AS -0 and AS -1 , the signing
algorithm is the BLS one, namely the signature on message m is σ = H(m)x. For AS -2 and AS -3 , a
signature on m under public key X is σ = H(X‖m)x. For all schemes, aggregation is done by simply
multiplying the signatures, i.e. σ =

∏n

i=1 σi in G1. Verification is different for each scheme. On inputs
(X1,m1), . . . , (Xn,mn), σ, the verification algorithm of AS -0 accepts iff e(σ, g) =

∏n

i=1 e(H(mi),Xi).
The verification algorithms of the other schemes are depicted in Table 1. In particular, AS -1 rejects
if m1, . . . ,mn are not all distinct, AS -2 rejects if X1‖m1, . . . ,Xn‖mn are not all distinct, while AS -3
performs no such checks.

Consistency conditions. The consistency condition (under what conditions correctly generated ag-
gregates are accepted by the verifier) differs from scheme to scheme, and is in fact the place where the
restrictions they make surface in a formal sense. AS -0 and AS -3 meet the natural, strongest possible
consistency requirement, namely that

Pr
[

AVfH((pk1,m1), . . . , (pkn,mn), σ) = 1
]

= 1

for all positive integers n, all messages m1, . . . ,mn ∈ {0, 1}
∗ and all (pk1, sk1), . . . , (pkn, skn) ∈ [Kg],

where the probability is over the experiment H
$

← Maps(D) ; σ1
$

← SignH(sk1,m1) ; · · · ; σn
$

← SignH(skn,

mn); σ
$

← AggH((pk1,m1, σ1), . . . , (pkn,mn, σn)). However, AS -1 meets this condition only when m1, . . . ,
mn are distinct and AS -2 when pk1‖m1, . . . , pkn‖mn are distinct.

Discussion of security. An attack provided in [7] shows that AS -0 is insecure. In this attack, however,
the forgery output by the adversary contains repeated messages. To exclude the attack, [7] defines AS -1 ,

5

Subroutine H-sim(M)
If (∃m : M = X∗‖m) then return HBLS (M)

Else If HT[M] = ⊥ then y[M]
$

← Zp ; HT[M]← ψ(g)y[M]

Return HT[M]

Subroutine Sign-sim(m)
Return SignBLS (x,X

∗‖m)

Figure 1: The subroutines for B to simulate the random oracle HAS -3 (·) and the sign oracle
SignAS -3 ((x,X

∗), ·). Above, HT and y are associative arrays assumed initially to have value ⊥ every-
where.

where the aggregate verification process rejects when messages repeat. They are able to show that this
suffices to guarantee security, meaning that they prove AS -1 is secure if the coCDH problem is hard. This
is their main result. Then they suggest to alleviate the message-distinctness restriction of AS -1 by having
each signer prepend its public key to the message before signing. However, they appear to want to argue
the security of the resulting aggregate signature scheme as a corollary of their main result on the security
of AS -1 . If so, verification still needs to check that X1‖m1, . . . ,Xn‖mn are all distinct (otherwise, the
result about AS -1 does not apply), leading to the AS -2 scheme.

As we have discussed, however, for practical reasons, AS -3 is a preferable scheme. But the results of
[7] do not prove it secure. Here is an example that helps to see what the problem is. Suppose there was
an adversary A that, on input pk = X and without making oracle query m, produced a forgery of the
form (X,m), (X ′,m′), (X ′,m′), σ, for some m′ 6= m and X ′ 6= X, that was accepted by the verification
procedure of AS -3 . Since the output of A contains repeated enhanced messages, the results of [7] do not
allow us to rule out the existence of A. Yet, showing that AS -3 meets the notion of security that we have
defined does require ruling out the existence of such an A.

Theorem 3.2 If the coCDH problem is (t′, ǫ′)-hard, then the AS -3 aggregate signature scheme is (t, qS,
nmax, qH, ǫ)-secure for any t, qS, nmax, qH, ǫ satisfying

ǫ ≥ e(qS + 1) · ǫ′ and t ≤ t′ − texp(2qH + 2qS + 3nmax + 1) . (2)

Our approach to the proof is different from the one used by [7] to prove that AS -1 is secure if coCDH
is hard. They gave a direct reduction to coCDH, meaning, given an adversary attacking AS -1 they
construct and analyze an adversary attacking coCDH. But, in so doing, they end up duplicating a lot of
the proof of the security of the BLS scheme as given in [9]. Instead, we reduce the security of AS -3 to
the security of BLS . That is, we prove the following:

Lemma 3.3 If the BLS standard signature scheme is (t′, q′S, q
′
H
, ǫ′)-secure then the AS -3 aggregate sig-

nature scheme is (t, qS, nmax, qH, ǫ)-secure for any t, qS, nmax, qH, ǫ satisfying

ǫ ≥ ǫ′, qS ≤ q
′
S − nmax, qH ≤ q

′
H and t ≤ t′ − texp · (qH + nmax + 1) . (3)

Theorem 3.2 follows easily from Lemma 3.3 and Lemma 3.1. Our modular approach yields a simple proof
even though we obtain a somewhat stronger result.

An interesting element of the proof of Lemma 3.3 is that it involves reducing the security of one
random oracle model scheme to another one. Given a forger A against AS -3 that queries a random
oracle, we must build a forger B against BLS . But B is itself given a random oracle. The idea is that B

will answer some of A’s queries via its own random oracle and directly simulate the others.

Proof of Lemma 3.3: Given a forger A that (t, qS, nmax, qH, ǫ)-breaks AS -3 , consider the following
forger B against the BLS standard signature scheme. B is given public key X∗ = gx as input, and has
access to a random oracle HBLS (·) and a signing oracle SignBLS (x, ·) = HBLS (·)

x. It runs A on input X∗

and responds to its HAS -3 (·) and SignAS -3 ((x,X
∗), ·) oracle queries using the subroutines in Figure 1.

When A submits a query M to its random oracle HAS -3 (·), the forger B executes H-sim(M). We note
here that in some cases the subroutine H-sim can in turn submit queries to B’s random oracle HBLS (·).
When A submits a query m to its sign oracle SignAS -3 ((x,X

∗), ·), the forger B executes Sign-sim(m).
Eventually, A halts and outputs a forgery (X1,m1), . . . , (Xn,mn), σ. Since A is legitimate, we know that

6

there exists i ∈ {1, . . . , n} such that Xi = X∗ and mi has never been queried to SignAS -3 ((x,X
∗), ·). We

let i∗ denote the smallest integer i for which this happens. Now B defines the sets:

I = { i | Xi = X∗ and mi = mi∗ }
J = { i | Xi = X∗ and mi 6= mi∗ }
K = { i | Xi 6= X∗ } .

Note that I is non-empty since i∗ ∈ I. Clearly, we have that I ∪ J ∪K = {1, . . . , n} and that I, J,K are
disjoint. Now, we can assume without loss of generality that n < p, because otherwise B can trivially
forge and output a BLS signature under X∗ in time O(ntexp) via exhaustive search for x. This means
that |I| ∈ Z

∗
p, and hence has an inverse modulo p that we denote by l. Now, for each i ∈ J , our

adversary B executes Sign-sim(mi) to obtain σi ← SignBLS (x,X
∗‖mi). For each i ∈ K, it calls its

subroutine H-sim(Xi‖mi), thereby ensuring that y[Xi‖mi] is defined, lets yi ← y[Xi‖mi], and then lets
σi ← ψ(Xi)

yi , which we note is the BLS signature of Xi‖mi under public key Xi. Finally, B lets

M∗ ← X∗‖mi∗ and σ∗ ←
(

σ ·
∏

i∈ J∪K σ−1
i

)l
, (4)

and outputs (M∗, σ∗) as its forgery.

For the analysis, we first argue that if A’s forgery is valid then B’s forgery is valid too. Assuming the
former, the verification equation of AS -3 tells us that

e(σ, g) =

n
∏

i=1

e
(

HAS -3 (Xi‖mi) , Xi

)

=
∏

i∈I

e
(

HBLS (X
∗‖mi∗) , X

∗
)

·
∏

i∈J

e
(

HAS -3 (X
∗‖mi) , X

∗
)

·
∏

i∈K

e
(

HAS -3 (Xi‖mi) , Xi

)

= e
(

HBLS (X
∗‖mi∗) , X

∗
)|I|
·

∏

i∈J∪K

e(σi , g) . (5)

Above, (5) is true because σi, as computed above by B, is the BLS signature of Xi‖mi under public key
Xi, for all i ∈ J ∪K. We then applied the verification equation of the BLS scheme. Now we see that if
σ∗ is defined by (4) then, from the above and the fact that |I| · l ≡ 1 (mod p) we have

e(σ∗, g) = e(σ, g)l ·
∏

i∈J∪K

e(σi, g)
−l

= e
(

HBLS (X
∗‖mi∗) , X

∗
)|I|·l mod p

·
∏

i∈J∪K

e(σi , g)
l ·

∏

i∈J∪K

e(σi, g)
−l

= e
(

HBLS (M
∗) , X∗

)

,

which means that σ∗ is a valid BLS signature of M∗ under public key X∗.

Furthermore, it is easy to see that the answers that B provided to the oracle queries of A are distributed
identically to the ones that A would have obtained from its oracles in the game defining its advantage.
The last thing we need to check is that B is legitimate, meaning did not query M∗ = X∗‖mi∗ to its
SignBLS (x, ·) oracle. But it did not do so while answering SignAS -3 ((x,X

∗), ·) oracle queries of A because A,
being legitimate itself, did not query mi∗ to its SignAS -3 ((x,X

∗), ·) oracle. Now B also called SignBLS (x, ·)
on X∗‖mi for all i ∈ J , but by definition of J , we know that mi 6= mi∗ . Putting everything together, we

get Advuf-cma
BLS (B) ≥ Advagg-uf

AS -3 (A).

Finally, we analyze the resource usage of B. For qS, we note that B makes sign queries in only two
situations: (1) whenever A makes a sign query, so does B, and (2) once A outputs a forgery, B makes
|J | ≤ nmax additional sign queries. For qH, it is easy to see that B makes at most the same number of
random oracle queries to HBLS as A makes to HAS -3 . For t, notice that B (1) answers qH random oracle
queries, each of which results in a call to H-sim, (2) possibly makes nmax more calls to H-sim after A

outputs its forgery, and (3) computes one exponentiation in the last step to convert A’s forgery into its
own. Thus, the claimed running time bound follows, and the proof is complete.

7

4 Unrestricted Sequential Aggregate Signatures

SAS schemes. A sequential aggregate signature (SAS) scheme [18] SAS = (Kg,SASign,SAVf) consists
of three algorithms, the last deterministic. The key generation algorithm is exactly as for standard
digital signatures. The first signer computes a signature on message m by calling σ ← SASignH(sk ,m).

Subsequent signers run σ
$

← SASignH(sk ,m, σ′, (pk1,m1), . . . , (pkn,mn)), where n > 0, to aggregate their
signature on a message m into a given sequential aggregate signature σ′ corresponding to a sequence of
public-key-message pairs. A verifier can run SAVfH((pk1,m1), . . . , (pkn,mn), σ), where n ≥ 0, to obtain
a bit, with 1 indicating accept and 0 reject.

Security. The security of a SAS scheme in the random oracle model requires that it be computationally
infeasible for an adversary to produce a sequential aggregate forgery involving an honest signer, even when
it can play the role of all other signers and can mount a chosen-message attack on the honest signer.
Formally, the advantage of an adversary A is

Advseq-agg-uf
SAS

(A) = Pr
[

SAVfH((pk1,m1), . . . , (pkn,mn), σ) = 1
]

where the probability is over the experiment

(pk , sk)
$

← Kg ; H
$

← Maps(D) ; ((pk1,m1), . . . , (pkn,mn), σ)
$

← ASASignH(sk ,···),H(pk) .

To make this meaningful, we impose that A be legitimate in the sense that there exists i ∈ {1, . . . , n} such
that pk i = pk and there exists no σi−1 ∈ {0, 1}

∗ such that A submitted query mi, σi−1, (pk1,m1), . . . ,
(pk i−1,mi−1) to the signing oracle. Thus, the honest signer here is the one whose keys are pk , sk , and
we are asking that the sequential aggregate forgery include some message and signature corresponding
to this honest signer, but the adversary never legitimately obtained a sequential aggregate signature of
this message. We say that A (t, qS, nmax, qH, ǫ)-breaks SAS if it runs in time at most t, invokes its signing
oracle at most qS times, invokes its random oracle at most qH times, has advantage strictly greater
than ǫ, and there are at most nmax public keys involved in either its forgery or any of its queries to
its signing or random oracles. We say that SAS is (t, qS, nmax, qH, ǫ)-secure if there is no adversary that
(t, qS, nmax, qH, ǫ)-breaks SAS .

The security requirement we are making is stronger than the one of [18]. One can view their definition
as asking for the same condition but for a more restricted (smaller) class of adversaries, namely ones whose
output must not contain repeated public keys and who may not submit any queries containing repeating
public keys to the signing oracle. We will show that a construction proposed in [18] remains secure even
under our more stringent definition.

Certified claw-free trapdoor permutations. The schemes we consider use a family of certified
claw-free trapdoor permutations over a group [18]. Let us recall the definitions. Let G be a multiplicative
group. A family of certified claw-free trapdoor permutations Π over G is a 4-tuple (Gen,Eval, Inv,Test) of

algorithms, all but the first being deterministic. Via (π, π, π−1)
$

← Gen, one can generate (the descriptions
of) a pair of permutations π, π on G and (the trapdoor information describing) the inverse permutation
π−1. For all (π, π, π−1) ∈ [Gen] and all x ∈ G, the evaluation algorithm Eval, on inputs π, x, returns
π(x) in time at most TΠ, and on inputs π, x returns π(x) in time at most TΠ, where TΠ is a number
associated to Π. The inversion algorithm Inv takes input π−1 and y ∈ G and returns π−1(y) in time at
most TΠ. The map Test takes input any string π′ and, in time at most TΠ, returns a bit, this being 1 if
and only if Eval(π′, ·) is a permutation on G whose computation takes time at most TΠ. We assume the
time for multiplication, inversion, and sampling random elements in G is also at most TΠ. We define the
advantage of an algorithm B in finding a claw in Π as

Advclaw
Π (B) = Pr

[

π(x) = π(y) | (π, π, π−1)
$

← Gen ; (x, y)
$

← B(π, π)
]

.

We say that Π is (t′, ǫ′)-claw-free if there is no adversary B that runs in time at most t′ yet has advantage
strictly more than ǫ′. From now on we will confound the permutations and their descriptions, writing
π(x) for Eval(π, x), and so on.

The SAS schemes we consider. The SAS -0 scheme of [18] associated to a family of certified claw-
free trapdoor permutations Π works as follows. Each signer generates a key pair (pk , sk) by computing

8

Alg SASignH((π, π−1),m, σn, (π1,m1), . . . , (πn,mn))

If n = 0 then σ0 ← 1

If SAVfH((π1,m1), . . . , (πn,mn), σn) 6= 1
then Return ⊥

h← H(π1‖m1‖ . . . ‖πn‖mn‖π‖m)
σ ← π−1(h · σn)
Return σ

Alg SAVfH((π1,m1), . . . , (πn,mn), σ)

If π1, . . . , πn not all different then Return 0

σn ← σ
For i = n, . . . , 1 do

If Test(πi) = 0 then Return 0
hi ← H(π1‖m1‖ . . . ‖πi‖mi)
σi−1 ← πi(σi) · h

−1
i

If σ0 = 1 then Return 1 else Return 0

Figure 2: The sequential aggregation and verification algorithms of SAS -0 . Removing the framed text
yields SAS -1 .

(π, π, π−1)
$

← Gen ; pk ← π ; sk ← (π, π−1). Let H : {0, 1}∗ → G be a random oracle. The sequential
aggregation and verification algorithms are described in Figure 2.

The SAS -0 scheme was proposed and proven secure in [18]. We consider here the SAS -1 scheme that
is identical to the SAS -0 scheme, except that the boxed distinctness test in the verification algorithm in
Figure 2 is dropped. (Note that this also affects the signing algorithm because it invokes the verification
algorithm as a subroutine.)

Consistency conditions. Similar to general aggregate signatures, the consistency condition for se-
quential aggregate signatures differs from scheme to scheme. SAS -1 meets the natural, strongest possible
consistency requirement, namely that

Pr
[

SAVfH((pk1,m1), . . . , (pkn,mn), σn) = 1
]

= 1

for all positive integers n and all messages m1, . . . ,mn ∈ {0, 1}
∗, the probability being in the experi-

ment where we select H
$

← Maps(D) ; (pk1, sk1), . . . , (pkn, skn) ∈ [Kg], then select σ1
$

← SASignH(sk1,

m1) ; σ2
$

← SASignH(sk2,m2, σ1, (pk1,m1)) ; · · · ; σn
$

← SASignH(skn,mn, σn−1, (pk1,m1), . . . , (pkn−1,
mn−1)). However, SAS -0 meets this condition only when pk1, . . . , pkn are distinct.

Discussion of security. No claims were made in [18] regarding the security of the SAS -1 scheme.
Unlike the case of the AS -1 general aggregate signature scheme, there does not seem to be an easy attack
when the distinctness condition is dropped. At the same time, the security proof of [18] clearly ceases
to go through for the SAS -1 scheme, because the simulation of signatures and the way the forgery is
exploited explicitly rely on all public keys being distinct. One may therefore rightfully wonder what the
reason for this restriction is, and whether it is strictly necessary.

Our result. The following implies that the distinctness restriction in the SAS -0 scheme can be dropped:

Theorem 4.1 If the family of certified claw-free trapdoor permutations Π is (t′, ǫ′)-claw-free, then the

SAS -1 sequential aggregate signature scheme is (t, qS, nmax, qH, ǫ)-secure for any t, qS, nmax, qH, ǫ satisfying

ǫ ≥ e(2qS + 1) · ǫ′ and t ≤ t′ − nmax · (qH + 2qS + 1) ·O(TΠ) .

We achieve this result through a number of refinements to the security proof of [18]. As in their proof,
our simulator responds to random oracle queries in such a way that it either knows the corresponding
sequential aggregate signature, or embeds its own challenge into the response. It then hopes that all the
forger’s signature queries correspond to hash queries of the first type, and that its forgery corresponds to
one of the second type. Our refinements allow us to handle signature queries with multiple occurrences of
the target public key, either by answering them correctly, or by directly exploiting the aggregate signature
provided by the adversary to find a claw for the underlying permutation. The proof, written using the
code-based game-playing technique [4], follows.

Games. Our proof of Theorem 4.1 will use code-based game-playing [4], and we begin by recalling
some background from [4]. A game —look at Figure 4 for examples— has an Initialize procedure,
procedures to respond to adversary oracle queries, and a Finalize procedure. A game G is executed

9

with an adversary A, as follows. First, Initialize executes, and its outputs are the inputs to A. Then
the latter executes, its oracle queries being answered by the corresponding procedures of G. When A

terminates, its output becomes the input to the Finalize procedure. The output of the latter, denoted
GA, is called the output of the game, and we let “GA⇒ y” denote the event that this game output takes
value y. The boolean flag bad is assumed initialized to false, and good will always denote the event
that it is never set to true. (This event is defined in all games.) Games Gi, Gj are identical until bad if
their code differs only in statements that follow the setting of bad to true. For examples, games G0, G1

of Figure 4 are identical until bad. The following is one version of the Fundamental Lemma of [4].

Lemma 4.2 [4] Let Gi, Gj be identical until bad games, and A an adversary. Then

Pr
[

GA
i ⇒ 1 ∧ good

]

= Pr
[

GA
j ⇒ 1 ∧ good

]

.

Proof of Theorem 4.1. We say that an adversary A against SAS -1 is simplified if it has the following
properties, where π denotes the public key input to A and π−1 its inverse:

1. A never repeats a query to its H-oracle.

2. Any H-query of A has the form π1‖m1‖ · · · ‖πn‖mn for some n ≥ 1, some π1, . . . , πn such that
Test(πi) = 1 for all 1 ≤ i ≤ n, and some m1, . . . ,mn ∈ {0, 1}

∗.

3. If A makes a query mn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) then it previously
made H-query π1‖m1‖ · · · ‖πn‖mn‖π‖mn+1.

4. If A outputs ((π1,m1), . . . , (πn,mn), σ) then it previously made H-query π1‖m1‖ · · · ‖πn‖mn.

5. If A makes H-query π1‖m1‖ · · · ‖πn‖mn then it previously made H-query π1‖m1‖ · · · ‖πn−1‖mn−1.
(And hence, inductively, has already queried π1‖m1‖ · · · ‖πi‖mi for all 1 ≤ i ≤ n− 1, in this order.)

6. If A makes a query mn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) then SAVfH((π1,m1),
. . . , (πn,mn), σn) = 1.

7. If A makes a query mn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) then for every i ∈
{1, . . . , n} such that πi = π, it is the case that A previously queriedmi, σi−1, (π1,m1), . . . , (πi−1,mi−1)
to SASignH((π, π−1), · · ·).

8. Let T denote the set of all π1‖m1‖ . . . ‖πl‖ml‖π‖ml+1 such that for some σl, adversary A queried
ml+1, σl, (π1,m1), . . . , (πl,ml) to its SASignH((π, π−1), · · ·) oracle. Then, |T | is always exactly qS
(rather than at most qS, which must be true because A makes at most qS queries to the oracle).
By “always,” we mean regardless of A’s input, coin tosses, and the answers it receives to its oracle
queries.

There are two stages in our proof. First, we transform a given adversary A′ attacking SAS -1 into a
simplified adversary A attacking SAS -1 without loss in advantage although at some cost in resources:

Lemma 4.3 Let A′ be an adversary that (t, qS, nmax, qH, ǫ)-breaks SAS -1. Then, we can construct a

simplified adversary A that (t∗, 2qS, nmax, q
∗
H
, ǫ)-breaks SAS -1 where

t∗ = t+ nmax(qH + 2qS + 1) ·O(TΠ) , q∗H = nmax(qH + 2qS + 1) .

Next, we construct an adversary B which enlists A’s help in breaking the family Π underlying SAS -1 :

Lemma 4.4 Let A be a simplified adversary that (t∗, qS, nmax, q
∗
H
, ǫ)-breaks SAS -1. Then, we can con-

struct an adversary B attacking Π such that

Advclaw
Π (B) ≥

Advseq-agg-uf
SAS -1 (A)

e(qS + 1)
, (6)

and the running time of B is at most that of A plus (q∗
H

+ 1) ·O(TΠ).

Theorem 4.1 follows directly from these two lemmas. We now proceed to prove the lemmas. A convention
made in writing code is that all array elements are assumed to initially be ⊥.

Proof of Lemma 4.3: The adversary A has access to oracles H and SASignH. On input a public key
π, it begins by initializing S and T to ∅. It then runs A′(π), answering hash and sign oracle queries of A′

10

Subroutine H-sim(x)

If ∃n , π1, . . . , πn, m1, . . . ,mn such that

– n ≥ 1 and x = π1‖m1‖ · · · ‖πn‖mn

– ∀i : 1 ≤ i ≤ n : mi ∈ {0, 1}
∗ and Test(πi) = 1

Then

For i = 1, . . . , n do Qi ← π1‖m1‖ · · · ‖πi‖mi ; If HT[Qi] = ⊥ then HT[Qi]← H(Qi)

Else If HT[x] = ⊥ then HT[x]
$

← G

Return HT[x]

Subroutine Sign-sim(mn+1, σn, (π1,m1), . . . , (πn,mn))

πn+1 ← π ; σ0 ← 1 ; T ← T ∪ {π1‖m1‖ . . . ‖πl‖ml‖π‖ml+1}

For i = 1, . . . , n+ 1 do If Test(πi) = 0 then return ⊥ ; Qi ← π1‖m1‖ · · · ‖πi‖mi

y ← H-sim(Qn+1)

For i = n, . . . , 1 do σi−1 ← πi(σi) ·HT[Qi]
−1

If σ0 6= 1 then return ⊥

S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))}

For i = 1, . . . , n do

If πi = π and (mi, σi−1, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S then Output ((π1,m1), . . . , (πi,mi), σi)

σn+1 ← SASignH((π, π−1),mn+1, σn, (π1,m1), . . . , (πn,mn))

Return σn+1

Figure 3: Subroutines for adversary A.

via the subroutines H-sim and Sign-sim, respectively, of Figure 3. Note that these subroutines call A’s
oracles. When A′ halts with some output ((π1,m1), . . . , (πn,mn), σn), adversary A

(1) makes an additional q = |T | − qS queries (m′
1, 1), . . . , (m′

q, 1) to SASignH((π, π−1), · · ·) oracle, where
m′

1, . . . ,m
′
q are distinct and π‖m′

i 6∈ T for all 1 ≤ i ≤ q,

(2) calls H-sim(π1‖m1‖ · · · ‖πn‖mn),

(3) outputs ((π1,m1), . . . , (πn,mn), σn), and halts.

Let us now explain how this ensures that A has the properties listed above without loss in advantage as
compared to A′.

Property 1 is achieved because A stores as HT[x] the answer to H-query x of A′, and, if this query is re-
peated, returns HT[x] without re-querying the oracle. A answers H-query x of A′ via its own H oracle only
when x has the form π1‖m1‖ · · · ‖πn‖mn with Test(πi) = 1 for all 1 ≤ i ≤ n, and, otherwise, itself picks a
random value to play the role of the answer. This ensures property 2, yet will not decrease the advantage of
A because the algorithms of SAS -1 never invoke the H oracle on inputs not of the above form. Properties 3
and 4 are obtained by having A make the extra H-query if necessary. Property 5 is provided by having
A query all appropriate un-queried prefixes of a H-query π1‖m1‖ · · · ‖πn‖mn before querying the latter.
Algorithm SASignH(π−1, · · ·) returns ⊥ on input mn+1, σn, (π1,m1), . . . , (πn,mn) unless SAVfH((π1,m1),
. . . , (πn,mn), σn) = 1, so we have A do this test and refrain from making the query unless the answer is
one, providing property 6. Property 7 is the most interesting, and an important element in dealing with
loops in signing chains. To explain how A provides it, suppose A′ made a query mn+1, σn, (π1,m1), . . . ,
(πn,mn) to SASignH((π, π−1), · · ·) such that for some 1 ≤ i ≤ n it was the case that πi = π but A did not
previously query mi, σi−1, (π1,m1), . . . , (πi−1,mi−1) to SASignH((π, π−1), · · ·). Then A, rather than mak-
ing query mn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·), outputs ((π1,m1), . . . , (πi,mi), σi)
as its forgery and halts. Property 6 tells us that SAVfH((π1,m1), . . . , (πi,mi), σi) = 1, and the fact that
A did not previously query mi, σi−1, (π1,m1), . . . , (πi−1,mi−1) to SASignH((π, π−1), · · ·) means that A

remains legitimate. So this can only increase the advantage of A compared to that of A′. Property 8
holds because, once A′ terminates, A makes additional sign-oracle queries that ensures that |T | becomes

11

Initialize Game G0 / G1

100 (π, π, π−1)
$

← Gen ; σ[ε]← 1 ; S ← ∅
101 Return π

On H-query π1‖m1‖ · · · ‖πn‖mn

110 Qn−1 ← π1‖m1‖ · · · ‖πn−1‖mn−1 ; Qn ← π1‖m1‖ · · · ‖πn‖mn ; σ[Qn]
$

← G

111 If πn = π then c[Qn]
δ

← {0, 1} else c[Qn]← 0

112 If c[Qn] = 0 then HT[Qn]← πn(σ[Qn]) · σ[Qn−1]
−1 else HT[Qn]← π(σ[Qn]) · σ[Qn−1]

−1

113 Return HT[Qn]

On SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn)

120 S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))} ; πn+1 ← π ; σ0 ← 1

121 For i = 1, . . . , n+ 1 do Qi ← π1‖m1‖ . . . ‖πi‖mi

122 σn+1 ← σ[Qn+1]

123 If (∃ i : 1 ≤ i ≤ n+ 1 : c[Qi] = 1) then bad← true ; σn+1 ← π−1(σn ·HT[Qn+1])

124 Return σn+1

Finalize((π1,m1), . . . , (πn,mn), σ)

130 s← min { i | 1 ≤ i ≤ n, πi = π and ∀τ : (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S }

131 σn ← σ

132 For i = n, . . . , 1 do Qi ← π1‖m1‖ · · · ‖πi‖mi ; σi−1 ← πi(σi) ·HT[Qi]
−1

133 If σ0 = 1 then d← 1 else d← 0

134 If (∃ i : 1 ≤ i ≤ s− 1 : c[Qi] = 1) then bad← true

135 If c[Qs] = 0 then bad← true

136 ω ← (σs, σ[Qs])

137 Return d

Figure 4: Game G1 includes the boxed statement, while game G0 does not. Also, notice that G1 uses
π−1, but G0 does not.

exactly qS. This does not affect the advantage of A but does increase the number of sign-oracle queries
by at most a factor of 2.

Proof of Lemma 4.4: We consider the games of Figure 4. The array entry HT[π1‖m1‖ · · · ‖πn‖mn]

plays the role of H(π1‖m1‖ · · · ‖πn‖mn). The notation c
δ

← {0, 1} means that c is assigned 0 with
probability δ and 1 with probability 1 − δ, where δ ∈ [0, 1] is a parameter whose value will be chosen
later [11]. These games rely on some of the properties of A listed above. For example, when answering
H-query Qn = π1‖m1‖ · · · ‖πn‖mn, property 5 allows us to assume HT[Qn−1], and thus also σ[Qn−1], are
already defined, where Qn−1 = π1‖m1‖ · · · ‖πn−1‖mn−1. Similarly, property 3 tells us that the relevant
HT[·] entries are defined at the time a SASignH((π, π−1), · · ·) query is made. Property 4 tell us that the
relevant HT[·] entries are defined at the time Finalize is run, and the legitimacy of A tells us that s
computed at line 130 is well-defined in the sense that the set over which the minimum is taken is not
empty. Notice that G1 uses π−1 but G0 does not.

Let us say that a H-query π1‖m1‖ · · · ‖πn‖mn is simulation signed if c[Qi] = 0 for all 1 ≤ i ≤ n, where
Qi = π1‖m1‖ · · · ‖πi‖mi. Then line 112 tells us that, in both G0 and G1, we have:

Claim 1. Let π1‖m1‖ · · · ‖πn‖mn be a simulation signed hash query, and let Qi = π1‖m1‖ · · · ‖πi‖mi for
0 ≤ i ≤ n. Then for all 1 ≤ i ≤ n we have σ[Qi] = π−1

n (σ[Qi−1] ·HT[Qi]). 2

12

Initialize Game G2 / G3

200 (π, π, π−1)
$

← Gen ; S ← ∅
201 Return π

On H-query π1‖m1‖ · · · ‖πn‖mn

210 Qn ← π1‖m1‖ · · · ‖πn‖mn

211 If πn = π then c[Qn]
δ

← {0, 1} else c[Qn]← 0

212 HT[Qn]
$

← G

213 Return HT[Qn]

On SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn)

220 S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))} ; πn+1 ← π ; σ0 ← 1

221 For i = 1, . . . , n+ 1 do Qi ← π1‖m1‖ . . . ‖πi‖mi

222 If c[Qn+1] = 1 then bad← true

223 If (∃ i : 1 ≤ i ≤ n : c[Qi] = 1) then bad← true

224 σn+1 ← π−1(σn ·HT[Qn+1])

225 Return σn+1

Finalize((π1,m1), . . . , (πn,mn), σ)

230 s← min { i | 1 ≤ i ≤ n, πi = π and ∀τ : (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S }

231 σn ← σ

232 For i = n, . . . , 1 do Qi ← π1‖m1‖ · · · ‖πi‖mi ; σi−1 ← πi(σi) ·HT[Qi]
−1

233 If σ0 = 1 then d← 1 else d← 0

234 If (∃ i : 1 ≤ i ≤ s− 1 : c[Qi] = 1) then bad← true

235 If c[Qs] = 0 then bad← true

236 Return d

Figure 5: Game G2 includes the boxed statements while G3 does not.

Claim 2. Let ω = (σs, σ[Qs]) be as per line 136 and d as per line 133. Then

Pr [π(σs) = π(σ[Qs])] ≥ Pr [d = 1 ∧ good] ,

where both probabilties are over the execution of G0 with A.

Proof. If good holds then line 134 tells us that π1‖m1‖ · · · ‖πs−1‖ms−1 is simulation signed. If d = 1
then from Claim 1 and line 132 we get σi = σ[Qi] for all 1 ≤ i ≤ s−1, and, in particular, σs−1 = σ[Qs−1].
If good holds then line 135 implies c[Qs] = 1, and then line 112 implies HT[Qs] = π(σ[Qs]) · σ[Qs−1]

−1.
Thus we have

π(σs) = πs(σs) = HT[Qs] · σs−1 = π(σ[Qs]) · σ[Qs−1]
−1 · σs−1 = π(σ[Qs]) . 2

Now define adversary B against Π as follows. On inputs π, π, it initializes σ[ε] ← 1 and S ← ∅. It then
runs A on input π, answering its oracle queries as per the code of game G0. When A halts, B runs the
Finalize code of G0 on input the output of A. It outputs ω and halts. Note that B is based on G0 rather
than G1 and thus does not need to know π−1. Then by Claim 2 we have

Advclaw
Π (B) ≥ Pr

[

GA
0 ⇒ 1 ∧ good

]

. (7)

However, G0 and G1 are identical-until-bad games, and so Lemma 4.2 implies that

Pr
[

GA
0 ⇒ 1 ∧ good

]

= Pr
[

GA
1 ⇒ 1 ∧ good

]

. (8)

Claim 3. In the execution of G1 with A, all oracle queries of the latter are answered correctly.

13

Initialize Game G4

400 (π, π, π−1)
$

← Gen ; S ← ∅
401 Return π

On H-query π1‖m1‖ · · · ‖πn‖mn

410 HT[π1‖m1‖ · · · ‖πn‖mn]
$

← G

411 Return HT[π1‖m1‖ · · · ‖πn‖mn]

On SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn)

420 S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))} ; σ0 ← 1

421 σn+1 ← π−1(σn ·HT[π1‖m1‖ · · · ‖πn‖mn‖π‖mn+1])

422 Return σn+1

Finalize((π1,m1), . . . , (πn,mn), σ)

430 s← min { i | 1 ≤ i ≤ n, πi = π and ∀τ : (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S }

431 σn ← σ

432 For i = n, . . . , 1 do Qi ← π1‖m1‖ · · · ‖πi‖mi ; σi−1 ← πi(σi) ·HT[Qi]
−1

433 If σ0 = 1 then d← 1 else d← 0

434 For all π′
1‖m

′
1‖ · · · ‖π

′
l‖m

′
l such that HT[π′

1‖m
′
1‖ · · · ‖π

′
l‖m

′
l] 6= ⊥ do

435 If π′
l = π then c[π′

1‖m
′
1‖ · · · ‖π

′
l‖m

′
l]

δ

← {0, 1} else c[π′
1‖m

′
1‖ · · · ‖π

′
l‖m

′
l]← 0

436 For all (m′
l+1, σ

′
l, (π

′
1,m

′
1), . . . , (π

′
l,m

′
l)) ∈ S do

437 If c[π′
1‖m

′
1‖ . . . ‖π

′
l‖m

′
l‖π‖m

′
l+1] = 1 then bad← true

438 If c[Qs] = 0 then bad← true

439 Return d

Figure 6: Game G4.

Proof. First consider a H-query Qn = π1‖m1‖ · · · ‖πn‖mn. The random choice of σ[Qn] at line 110,
together with the fact that πn, π are permutations, then implies that HT[Qn] is uniformly distributed,
meaning the answer to this query is exactly as would be given by a random oracle. Next consider
a SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn). We consider two cases. If Qn+1 =
π1‖m1‖ . . . ‖πn‖mn‖π‖mn+1 is simulation signed then Claim 1 tells us that the value σ[Qn+1] returned
is correct. Otherwise, the value σn+1 returned is computed by the boxed statement at line 123 and is
correct because it is computed just as in SASignH((π, π−1), · · ·). Here we use property 6, which tells us
that σn−1 was correct. 2

Claim 3 implies that

Pr
[

GA
1 ⇒ 1 ∧ good

]

= Pr
[

GA
2 ⇒ 1 ∧ good

]

, (9)

where game G2 is in Figure 5. Game G2 directly answers all oracle queries correctly, meaning just as in
the game defining the advantage of A. Additionally it splits up the setting of bad as done by line 123 of
G1 into lines 222, 223. Next we claim that

Pr
[

GA
2 ⇒ 1 ∧ good

]

= Pr
[

GA
3 ⇒ 1 ∧ good

]

. (10)

To justify this, we explain why lines 223, 234 of G2 are redundant and can simply be dropped to arrive
at G3. First consider line 223. Suppose c[Qi] = 1 for some 1 ≤ i ≤ n. Then it must be that πi = π, since,
otherwise, due to line 211, c[Qi] can only be 0. But then property 7 says that A must have previously made
SASignH((π, π−1), · · ·)-query mi, σi−1, (π1,m1), . . . , (πi−1,mi−1). If so, line 222 would have set bad at the
time this query was made. Now consider line 234. The definition of s and line 211 tell us that if there is a
1 ≤ i ≤ s− 1 such that c[Qi] = 1 then it must be that πi = π and (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) ∈ S
for some τ . But then, again, bad would have been set by line 222 when SASignH((π, π−1), · · ·)-query

14

mi, τ, (π1,m1), . . . , (πi−1,mi−1) was made.

In Game G3, the responses to oracle queries do not depend on the value of the flag bad. Thus, the choices
of c[·] and the setting of bad can be postponed, meaning G3 is equivalent to game G4 of Figure 6. Now
we claim that, in the execution of A with Game G4, the events “GA

4 ⇒ 1” and good are independent, so
that

Pr
[

GA
3 ⇒ 1 ∧ good

]

= Pr
[

GA
4 ⇒ 1 ∧ good

]

= Pr
[

GA
4 ⇒ 1

]

· Pr [good]

= Pr
[

GA
4 ⇒ 1

]

· Pr
[

GA
4 doesn’t set bad

]

. (11)

Let us justify the independence claim. We observe that the random choices c[·] are made after the
game output is determined. Since good depends only on these choices, we would like to conclude the
independence claim. But there is a subtle point. We also need that the number of (biased) coins involved
in determining good is the same in all runs. This is ensured by Property 8 of the simplified adversary.

Now, the output d of GA
4 is 1 exactly when A succeeds in forgery, meaning

Pr
[

GA
4 ⇒ 1

]

= Advseq-agg-uf
SAS -1 (A) . (12)

On the other hand

Pr
[

GA
4 doesn’t set bad

]

= δqS · (1− δ) . (13)

We now select δ ∈ [0, 1] to maximize the function f(δ) = δqS(1− δ), which yields δ = 1− 1/(qS + 1) and
we have

δqS · (1− δ) =

(

1−
1

qS + 1

)qS

·
1

qS + 1
>

1

e(qS + 1)
. (14)

Putting together (7), (8), (9), (10), (11), (12), (13), and (14), we get (6). The running time of B is that
of A plus an overhead of (q∗

H
+ 1) ·O(TΠ) due to line 112.

Instantiating SAS -1 with RSA. RSA does not directly give rise to a family of certified trapdoor
permutations. (Each instance comes with its own modulus, so that different instances are over different
groups. Also it is not clear in general how to test that a given number is a valid RSA exponent relative
to a given modulus.) An RSA-based instantiation of SAS -1 can however be obtained by using the family
of certified claw-free trapdoor permutations from [14]. This comes at the cost of efficiency, however, as a
permutation evaluation now takes two RSA exponentiations. Another option is to use techniques in [18],
which either require the signers to be ordered by increasing moduli, or add one bit to the signature for
each signer. (However, we note that requiring that the signers be ordered according to their moduli
excludes some pattern in which the repeats can occur, for example, non-trivial loops, namely a loop
containing at least two distinct signers.) To ensure the certification, they suggest that the encryption
exponent e can be chosen to be a prime larger than N . Alternatively, one can use an arbitrary encryption
exponent e such that gcd(e, ϕ(N)) = 1 at the cost of longer public keys as proposed in [10]. As the group
operation, one must use addition (modulo 2|N | when using [14] or modulo N when using the techniques
of [18]) since multiplication is only a group operation over Z

∗
N .

5 Tightening the security reductions

We present variants of AS -3 and SAS -1 where the reductions in the security proofs are tight. These
schemes can provide the same security as the previous ones in smaller groups, and thus end up being
more efficient.

5.1 Tight security for GAS

The security reduction for the BLS standard signature scheme given in [9] (see our Lemma 3.1) is not
tight. Since our security result for AS -3 is based on Lemma 3.1, we inherit this loss in security. The

15

Alg Sign((x,X),M)

If ST[M] = ⊥ then b
$

← {0, 1} ; σ ← H(b‖X‖m)x ; ST[M]← b‖σ
Return ST[M]

Alg Agg((X1,m1, σ1), . . . , (Xn,mn, σn))
For i = 1 to n do Parse σi as bi‖σ

′
i

σ ←
∏n

i=1 σ
′
i

Return (b1, . . . , bn, σ)

Alg AVf((X1,m1), . . . , (Xn,mn), σ′)
Parse σ′ as (b1, . . . , bn, σ)
If e(σ, g) =

∏n

i=1 e(H(bi‖Xi‖mi),Xi) then return 1 else return 0

Figure 7: The signing, aggregation, and verification algorithms for the AS -4 GAS scheme.

security reductions for AS -1 and AS -2 from [7] are not tight either. Here, we will present AS -4 , which
has about the same efficiency as AS -3 , but is proven secure via a tight reduction to coCDH. AS -4 is based
on a variant of the Katz-Wang variant of the BLS scheme. Below, we use the notation and definitions of
Section 3. In particular, we fix pairing parameters G1,G2,GT , e, g, and ψ.

Ideas. Let us first recall the Katz-Wang variant [16] of the BLS scheme, which has a tight reduction
to coCDH. The signer has the same keys as in AS -2 and AS -3 , namely secret key (x,X), where x ∈ Zp

and X = gx ∈ G2, and public key X. To sign a message m, the signer picks a random bit b and returns
σ = H(b‖m)x, where H: {0, 1}∗ → G1 is a random oracle. (It is important that if m is re-signed, the
signer not generate a fresh bit b, but reuse the one generated the first time this message was signed. One
way to do this is to maintain state in the form of a table of message-signature pairs. Another way is not
to pick b at random, but instead specify it as a PRF applied to the message, where the key for the PRF
is part of the signer’s secret key.) On input public key X, message m, and candidate signature σ, the
verifier accepts if e(σ, g) = e(H(0‖m),X) or e(σ, g) = e(H(1‖m),X), and rejects otherwise. However,
suppose now that we aggregate these signatures. Given an aggregate of n signatures, the verifier will need
to try each value of the bit for each constituent signature, leading to a verification algorithm that takes
2n steps. To solve this problem, we slightly modify the base scheme. Rather than having the verifier
perform the two checks for 0‖m and 1‖m, we instead output the bit b as part of the signature and make
the verifier accept iff e(σ, g) = e(H(b‖m),X). We now present an unrestricted GAS scheme with this as
the base scheme.

The AS -4 scheme. Let AS -4 = (Kg,Sign,Agg,AVf) be the GAS scheme defined as follows. The key
generation algorithm Kg picks x at random from Zp, sets X = gx, returns (x,X) as the secret key and
X as the public key. Let H: {0, 1}∗ → G1 be a random oracle. The other three algorithms are shown
in Figure 7. We have presented the signing algorithm as stateful, but it can be rendered stateless as
discussed above. Namely, rather than having it pick the bit b at random, it can compute it by applying
a PRF to the message, where the key for the PRF is part of the secret signing key.

Notice that the length of an aggregate signature in this scheme is not equal to that of a regular
signature, but instead grows by one bit for each signature added to the aggregate. From an asymptotic
point of view, this might be considered terrible since the aggregate grows linearly in the number of
signatures. But in fact, only a single bit is being added per signature, and in practice, the effect of this
may be negligible. For example, a typical certificate chain is unlikely to contain more than 20 certificates.
In this case, AS -4 adds only 20 bits compared to AS -3 . Meanwhile, the costs for signing, aggregation,
and verification are the same as for AS -3 . But, for a given desired level of provable security, the tight
reduction for AS -4 means it can use smaller groups than AS -3 . This means that it is actually more
efficient. Furthermore, a smaller group means a smaller base signature, so the extra bits may even be for
free. Precise estimates are difficult because we lack precise information about the size of groups needed
for different levels of security [12].

Security of AS -4 . Our proof for AS -3 took a modular approach, reducing security to that of the

16

underlying base signature scheme. Unfortunately, that does not seem to work here. Instead, we reduce
directly to the coCDH problem. The result is as follows.

Theorem 5.1 If the coCDH problem is (t′, ǫ′)-hard, then the AS -4 scheme is (t, qS, nmax, qH, ǫ)-secure

for any t, qS, nmax, qH, ǫ satisfying

ǫ ≥ 2 · ǫ′ and t ≤ t′ − texp(2qH + 3qS + 3nmax + 2)−O(qS + nmax) .

Proof of Theorem 5.1 We say that an adversary A against AS -4 is simplified if it has the following
properties. Below, X∗ = gx so that the secret key is (x,X∗) and X∗ is the public key input to A:

1. If ((X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ)) is the forgery output by A, then it is always the case that
n ≥ 1 and X1 = X∗ and m1 was not queried to SignAS -4 ((x,X

∗), ·).

2. If A makes a sign query m, then there is a bit b ∈ {0, 1} such that it previously made a hash query
b‖X∗‖m.

3. If A outputs forgery ((X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ)), then it has previously made hash
queries bi‖Xi‖mi for all 1 ≤ i ≤ n.

There are two stages in our proof. First, we transform a given adversary A′ attacking AS -4 into a
simplified adversary A attacking AS -4 without loss in advantage although at some cost in resources:

Lemma 5.2 Let A′ be an adversary that (t, qS, nmax, qH, ǫ)-breaks AS -4 . Then, we can construct a sim-

plified adversary A that (t∗, qS, nmax + 1, q∗
H
, ǫ)-breaks AS -4 where

t∗ = t+O(qS + nmax) , q∗H = qH + qS + nmax + 1 .

Next, we construct an adversary B which enlists A’s help in solving the coCDH problem:

Lemma 5.3 Let A be a simplified adversary that (t∗, qS, n
∗
max, q

∗
H
, ǫ)-breaks AS -4 . Then, we can construct

an adversary B solving the coCDH problem such that

Advco-cdh(B) ≥
Advagg-uf

AS -4 (A)

2
, (15)

and the running time of B is at most that of A plus texp(2q∗
H

+ qS + n∗max + 1).

Theorem 5.1 follows directly from these two lemmas. We now proceed to prove the lemmas. A convention
made in writing code is that all array elements are assumed to initially be ⊥.

Proof of Lemma 5.2: The adversary A is depicted in Figure 8. In the case that F = ∅, adversary
A′ will not win anyway, so the addition made by A to the forgery does not decrease the advantage but
ensures that the forgery contains bj ,Xj ,mj such that Xj = X∗ but mj was not a sign query. The
components of the forgery are then reordered to bring the j-th component into the first place. Since the
groups G1,G2,GT are cyclic, they are also commutative, so this does not decrease the probability that
the forgery is valid.

Proof of Lemma 5.3: We consider the games of Figure 9. (See Section 4 for background on game
playing.) Adversary B works as follows. On inputs g,X∗, h, it runs A on input X∗. It answers A’s oracle
queries via subroutines H-sim and Sign-sim, the code for these being exactly that of the corresponding
procedures of game G0. When A halts with forgery ((X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ)), adversary B

executes lines 030–036 of the Finalize procedure of G0 and outputs γ.

Before proceeding to the analysis, let us provide some intuition.

If A makes a hash query b‖X‖m with X 6= X∗ then B answers in such a way that it knows the signature
corresponding to this query. Specifically, it picks a random y and answers ψ(g)y. The signature is ψ(X)y.

If A makes a hash query b‖X‖m with X = X∗, then B picks a random bit B[X∗‖m]. If B[X∗‖m] = b,
then it answer as in the previous case. Otherwise, it embeds h into the answer. Specifically, it picks a

17

Subroutine Sign-sim(m)
HAS -4 (0‖X

∗‖m) ; S ← S ∪ {m} ; Return SignAS -4 ((x,X
∗),m)

Adversary A(X∗)
1 Run A′ on X∗ answering its hash queries using HAS -4 and sign queries using Sign-sim
2 Until A′ halts and outputs a forgery (X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ)
3 F ← { i | Xi = X∗ and mi 6∈ S }
4 If F = ∅ then
5 bn+1 ← 0 ; Xn+1 ← X∗ ; s← n+ 1 ; j ← n+ 1
6 Let mn+1 be a message not in S

7 Else s← n ; j
$

← F
8 For i = 1, . . . , s do HAS -4 (bi‖Xi‖mi)
9 σ′ ← (bj , b1, . . . , bj−1, bj+1, . . . , bs, σ)
10 Return (Xj ,mj), (X1,m1), . . . , (Xj−1,mj−1), (Xj+1,mj+1), . . . , (Xs,ms), σ

′

Figure 8: Adversary A for the proof of Lemma 5.2. The adversary has oracles HAS -4 and
SignAS -4 ((x,X

∗), ·). Above, S is initialized to empty.

random y and answers ψ(g)yh. The first time there is a hash query of the form b‖X∗‖m, the bit B[X∗‖m]
and the values H(0‖X∗‖m),H(1‖X∗‖m) are defined so that subsequent queries do not redefine B[X∗‖m].

If A makes a sign query m, then B looks up the value y corresponding to the hash query 0‖X∗‖m and
replies with 0‖ψ(X∗)y.

Once A outputs a forgery ((X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ)), adversary B divides out all the sig-
natures that it knows, i.e. the ones for which Xi 6= X∗ and for which Xi = X∗ and bi = B[X∗‖mi].
For each of the rest, i.e. the ones for which Xi = X∗ but bi 6= B[X∗‖mi], it observes that the signature
is of the form ψ(g)xyihx = ψ(X∗)yihx where yi is the random value corresponding to the hash query
bi‖X

∗‖mi and x is the discrete logarithm of X∗, which it does not know. To compute hx, the adversary
B collects into τ the signatures it knows along with the blinding factors ψ(X∗)yi in the hash values
H(B[X∗‖mi]‖X

∗‖mi). Then, σ/τ = hxs, so hx can be obtained as long as s mod p 6= 0.

The analysis needs to show that s mod p 6= 0 with probability at least 1/2, and moreover, that this is
independent of the success of A. It is to argue this clearly and rigorously that we use games.

For the analysis, let goodi be the event that the flag bad is not set in game Gi, for i = 0, 1. We claim
that

Advco-cdh(B) ≥ Pr
[

GA
0 ⇒ true ∧ good

]

. (16)

We justify this as follows. The advantage of B is exactly the probability that γ = hx in game G0. We
now argue that, if A’s forgery is valid and bad is not set then γ = hx. The following chain of equalities
is justified below:

e(σ, g) =
n

∏

i=1

e(HT[bi‖Xi‖mi],Xi) (17)

=
∏

i∈I

e(HT[bi‖X
∗‖mi],X

∗) ·
∏

i∈J

e(HT[bi‖Xi‖mi],Xi) (18)

=
∏

i∈I

e(ψ(g)yih,X∗) ·
∏

i∈J

e(ψ(g)yi ,Xi) (19)

=
∏

i∈I

e(h,X∗) ·
n

∏

i=1

e(ψ(g)yi ,Xi) (20)

18

Initialize Game G0

000 x
$

← Z
∗
p ; X∗ ← gx ; h

$

← G1

001 Return g,X∗, h

On H-query b‖X‖m

010 If HT[0‖X‖m] = ⊥ then

011 c
$

← {0, 1} ; B[X‖m]← c

012 y[0‖X‖m]
$

← Zp ; y[1‖X‖m]
$

← Zp

013 If X = X∗ then
014 HT[c‖X∗‖m]← ψ(g)y[c‖X‖m]

015 HT[1− c‖X∗‖m]← ψ(g)y[1−c‖X‖m]h
016 Else
017 HT[0‖X‖m]← ψ(g)y[0‖X‖m]

018 HT[1‖X‖m]← ψ(g)y[1‖X‖m]

019 Return HT[b‖X‖m]

On SASignH-query m

020 b← B[X∗‖m]

021 Return b‖ψ(X∗)y[b‖X∗‖m]

Finalize((X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ))

030 I ← { i | Xi = X∗ and bi 6= B[Xi‖mi] }
031 J ← {1, . . . , n} \ I
032 τ ← 1 ; s← |I|
033 For i = 1, . . . , n do
034 yi ← y[Mi] ; σi ← ψ(Xi)

yi ; τ ← τσi

035 If B[X∗‖m1] = b1 then bad← true ; γ ← ⊥

036 Else s′ ← s−1 mod p ; γ ← (στ−1)s′

037 Return e(σ, g) =
∏n

i=1 e(HT[bi‖Xi‖mi],Xi)

Initialize Game G1

100 x
$

← Z
∗
p ; X∗ ← gx ; h

$

← G1

101 Return g,X∗, h

On H-query b‖X‖m

110 If HT[0‖X‖m] = ⊥ then

111 HT[0‖X‖m]
$

← G1 ; HT[1‖X‖m]
$

← G1

112 Return HT[b‖X‖m]

On SignH-query m

120 If B[X∗‖m] = ⊥ then

121 B[X∗‖m]
$

← {0, 1}
122 b← B[X∗‖m]
123 Return b‖HT[b‖X∗‖m]x

Finalize((X1,m1), . . . , (Xn,mn), (b1, . . . , bn, σ))

130 B[X∗‖m1]
$

← {0, 1}
131 If B[X∗‖m1] = b1 then bad← true

132 Return e(σ, g) =
∏n

i=1 e(HT[bi‖Xi‖mi],Xi)

Figure 9: Games G0, G1 for the proof of Lemma 5.3.

= e(hs,X∗) ·
n

∏

i=1

e(ψ(Xi)
yi , g) (21)

= e(hs,X∗) · e(τ, g) . (22)

Equation (17) is from the verification algorithm of the scheme and the assumption that A’s forgery is valid.
Equation (18) is true because Xi = X∗ for i ∈ I and the sets I, J partition {1, . . . , n}. Equation (19)
is due to the way G0 responds to hash queries. Specifically, for i ∈ I we have HT[bi‖X

∗‖mi] = ψ(g)yih
because bi 6= B[X∗‖mi], while for i ∈ J we have HT[bi‖Xi‖mi] = ψ(g)yi both when Xi = X∗ and when
Xi 6= X∗. Equation (20) uses the bilinearity of e. Equation (21) uses two things: that s = |I|, and
that e(ψ(A), B) = e(ψ(B), A) for all A,B ∈ G2. Equation (22) is true because τ =

∏n

i=1 ψ(Xi)
yi due to

line 034 of G0. Now, from (22), we have

e(στ−1, g) = e(hs,X∗) = e(hs, gx) = e(hxs, g) .

So it must be that hxs = στ−1. We now claim that if b1 6= B[X∗‖m1] —meaning bad is false— then
s ∈ Z

∗
p. This means s has an inverse modulo p, and hence the value γ computed at line 036 of G0 equals

hx. We now justify the above claim. By property 1 of the simplified adversary A, we know that m1 was
not a sign query. So if b1 6= B[X∗‖m1], then 1 ∈ I, meaning I 6= ∅ and s > 0. However, we have written
the code of B with the assumption that s < p. (We may assume without loss of generality that n < p,
because otherwise B can exhaustively search for x in time O(ntexp) and compute hx.) Thus, s ∈ Z

∗
p

as claimed. We have just argued that if A’s forgery is valid (meaning the output of G0 is true) and

19

b1 6= B[X∗‖m1] (meaning good holds) then γ = hx. That is, we have justified Equation (16).

We now claim that

Pr
[

GA
0 ⇒ true ∧ good0

]

= Pr
[

GA
1 ⇒ true ∧ good1

]

(23)

= Pr
[

GA
1 ⇒ true

]

· Pr [good1] . (24)

Game G0 answers hash oracle queries correctly, so these answers are distributed just as those of G1. The
same is true for sign queries. However, G1 only defines B[X∗‖m] when m is a sign query. Property 1 says
that m1 was not a sign query, so the sign procedure does not pick B[X∗‖m1]. Thus, its choice is delayed
until the Finalize procedure. Thus, Equation (23) is true. Now, it is clear that in G1 the game output
is determined before B[X∗‖m1] is chosen, so that the events good1 and “GA

1 ⇒ true” are independent.
This justifies Equation (24). However,

Pr
[

GA
1 ⇒ true

]

= Advagg-uf
AS -4 (A) and Pr [good1] =

1

2
. (25)

Combining Equations (16), (24) and (25) yields Equation (15).

For the running time analysis, recall that B runs A answering A’s hash and sign queries using the code
of the corresponding procedures of G0 and then, once A outputs a forgery, B executes lines 030–036.
Thus, in the worst case, each hash-oracle query incurs two exponentiations from lines 013–018 (thus,
the 2q∗

H
term), and each sign-oracle query incurs one exponentiation from line 021 (thus, the qS term).

Additionally, each loop iteration on lines 033–034 incurs one exponentiation (thus, the n∗
max term), and

line 036 incurs one exponentiation. Lemma 5.3 follows.

5.2 A variant of SAS -1 with a tight reduction

The security result of SAS -1 can be improved. Similar to the case of GAS schemes, we can apply the
Katz-Wang technique of [16] to make the reduction tight.

Ideas. We use ideas similar to the design of the AS -4 GAS scheme. Specifically, the key generation of the
new scheme is the same as that of SAS -1 . To generate a sequential aggregate on (π, π−1),m, σn, (π1,m1),
. . . , (πn,mn), the signer picks a random bit b and returns H(b‖(π1,m1)‖ . . . ‖(πn,mn)‖π‖m) where
H: {0, 1}∗ → G is a random oracle. Similar to AS -4 , to avoid having the verification algorithm try
each value of the bit for each constituent message, which would take 2n steps for a sequential aggregate
signature comprising n permutation-message pairs, we output the bit b as part of the signature. This
increase in the signature length is small. See Section 5.1 for discussions on this issue.

The SAS -2 scheme. Let SAS -2 = (Kg,SASign,SAVf) be the SAS scheme defined as follows. The key

generation algorithm has each signer generate a key pair (pk , sk) by computing (π, π, π−1)
$

← Gen ; pk ←
π ; sk ← (π, π−1). Let H : {0, 1}∗ → G be a random oracle. The sequential aggregation and verification
algorithms are described in Figure 10. We have presented the signing algorithm as stateful, but it can be
rendered stateless as discussed in Section 5.1. Namely, rather than having it pick the bit b at random,
it can compute it by applying a PRF to the message, where the key for the PRF is part of the secret
signing key.

Security of SAS -2 . The following theorem states that SAS -2 scheme is secure in the random oracle
model assuming that the underlying family of permutations is claw-free.

Theorem 5.4 If the family of certified claw-free trapdoor permutations Π is (t′, ǫ′)-claw-free, then the

SAS -2 sequential aggregate signature scheme is (t, qS, nmax, qH, ǫ)-secure for any t, qS, nmax, qH, ǫ satisfying

ǫ ≥ 2 · ǫ′ and t ≤ t′ − nmax · (qH + 2qS + 1) ·O(TΠ) .

Proof of Theorem 5.4: We do not give a full proof here, but rather sketch the differences with the
proof of Theorem 4.1. The new algorithm B works largely in the same way. However, in its simulation
of A in Game G0, it maintains an extra table B[·] in which it associates a random bit to each Qn that is

20

Algorithm SASign((π, π−1),m, σn, (π1,m1), . . . , (πn,mn)):
If n = 0 then s0 ← 1
Else
Qn ← (π1,m1)‖ . . . ‖(πn,mn)
If SAVf(Qn, σn) 6= 1 then return ⊥
If ST[m‖σn‖Qn] 6= ⊥, then return ST[m‖σn‖Qn]
Parse σn as (b1, . . . , bn, sn)

bn+1
$

← {0, 1} ; h← H(bn+1‖Qn‖(π,m))
sn+1 ← π−1(h · sn) ; σn+1 ← (b1, . . . , bn+1, sn+1)
ST[m‖σn‖Qn]← σn+1

Return σn+1

Algorithm SAVf((π1,m1), . . . , (πn,mn), σ):
Parse σ as (b1, . . . , bn, sn)
For i = n, . . . , 1 do

If Test(πi) = 0 then return 0
hi ← H(bi‖(π1,m1)‖ . . . ‖(πi,mi))
si−1 ← πi(si) · h

−1
i

If s0 = 1 then return 1 else return 0

Figure 10: The aggregation and verification algorithms for the SAS -2 SAS scheme.

part of a H(b‖Qn‖(π,M)) query. Also, the table HT now uses b‖Qn as the key rather than simply Qn.
On a hash query b‖Qn‖(π,M) where Qn = π1‖m1‖ · · · ‖πn‖mn, if πn 6= π (recall that π is the public
key given as input to A), then B computes HT[b‖Qn]← πn(σ[Qn]) · σ[Qn−1]

−1 as before. If πn = π and
b = B[Qn], then B computes HT[b‖Qn] ← πn(σ[Qn]) · σ[Qn−1]

−1 as in the case for πn 6= π. If πn = π
and b 6= B[Qn], however, B computes HT[b‖Qn] as π(σ[Qn]) · σ[Qn−1]

−1.

Acknowledgments

We thank the ICALP 2007 anonymous referees for their valuable comments.

References

[1] M. Bellare, A. Boldyreva, and J. Staddon. Randomness re-use in multi-recipient encryption schemes.
In Y. Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice in Public

Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 85–99, Miami, USA,
Jan. 6–8, 2003. Springer-Verlag, Berlin, Germany.

[2] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell, editor, Advances in

Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 390–420, Santa
Barbara, CA, USA, Aug. 16–20, 1992. Springer-Verlag, Berlin, Germany.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS 93: 1st Conference on Computer and Communications Security, pages
62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press.

[4] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. In
S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in

Computer Science, St.-Petersburg, Russia, May 29 – June 1, 2006. Springer-Verlag, Berlin, Germany.
Available as Cryptology ePrint Report 2005/334.

[5] M. Bellare and M. Yung. Certifying permutations: Noninteractive zero-knowledge based on any
trapdoor permutation. Journal of Cryptology, 9(3):149–166, 1996.

[6] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Y. Desmedt, editor, PKC 2003: 6th International Workshop

on Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer

Science, pages 31–46, Miami, USA, Jan. 6–8, 2003. Springer-Verlag, Berlin, Germany.

21

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 416–432, Warsaw, Poland, May 4–8, 2003. Springer-Verlag,
Berlin, Germany.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two signature aggregation techniques.
RSA’s CryptoBytes, 6(2), Summer 2003.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor,
Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 514–532, Gold Coast, Australia, Dec. 9–13, 2001. Springer-Verlag, Berlin, Germany.

[10] D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor hard-to-invert group isomorphisms and their
application to password-based authentication. Journal of Cryptology, 20(1):115–149, 2006.

[11] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Advances in Cryptology

– CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229–235, Santa Barbara,
CA, USA, Aug. 20–24, 2000. Springer-Verlag, Berlin, Germany.

[12] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryptology ePrint Archive,
Report 2006/165, 2006. http://eprint.iacr.org/.

[13] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

[14] R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permutations with a common
domain and its applications. In F. Bao, R. Deng, and J. Zhou, editors, PKC 2004: 7th International

Workshop on Theory and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in

Computer Science, pages 291–304, Singapore, Mar. 1–4, 2004. Springer-Verlag, Berlin, Germany.

[15] Intergovernmental Oceanographic Commission of UNESCO. Towards the establishment of a tsunami
warning and mitigation system for the Indian Ocean. Available at http://ioc3.unesco.org/

indotsunami/. Last accessed April 13, 2007.

[16] J. Katz and N. Wáng. Efficiency improvements for signature schemes with tight security reductions.
In ACM CCS 03: 10th Conference on Computer and Communications Security, pages 155–164,
Washington D.C., USA, Oct. 27–30, 2003. ACM Press.

[17] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate signatures and
multisignatures without random oracles. In S. Vaudenay, editor, Advances in Cryptology – EURO-

CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, St.-Petersburg, Russia, May 29 –
June 1, 2006. Springer-Verlag, Berlin, Germany.

[18] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from trap-
door permutations. In C. Cachin and J. Camenisch, editors, Advances in Cryptology – EURO-

CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 74–90, Interlaken, Switzer-
land, May 2–6, 2004. Springer-Verlag, Berlin, Germany.

[19] H. Shacham. New Paradigms in Signature Schemes. PhD thesis, Stanford University, 2005.

22

http://eprint.iacr.org/

	Introduction
	Notation and Basic Definitions
	Unrestricted General Aggregate Signatures
	Unrestricted Sequential Aggregate Signatures
	Tightening the security reductions
	Tight security for GAS
	A variant of SAS-1 with a tight reduction

