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Abstract

We present a protocol for anonymous access to a database where the different records have
different access control permissions. These permissions could be attributes, roles, or rights that
the user needs to have in order to access the record. Our protocol offers maximal security
guarantees for both the database and the user, namely (1) only authorized users can access the
record; (2) the database provider does not learn which record the user accesses; and (3) the
database provider does not learn which attributes or roles the user has when she accesses the
database.

We prove our protocol secure in the standard model (i.e., without random oracles) under
the bilinear Diffie-Hellman exponent and the strong Diffie-Hellman assumptions.

1 Introduction

More and more transactions in our daily life are performed electronically. People enter their cre-
dentials online and into various databases and disclose their personal information to different or-
ganisations with the belief that small amounts of information cannot reveal enough about them to
impact them in a negative way. When using the internet extensively however, they can give away
much more information about themselves than they may care to admit.

Also to protect sensitive information such as medical or financial data we need to provide strong
access control to be sure that only those people who have the necessary permissions can access it.
But statistics about what sort of data people query also reveals a lot of information about them.

It is possible to build a complete picture of someone’s movements, transactions, locations and
relationships from the trail left from interaction with websites and various databases. So personal
security has become a serious issue.

To protect the users’ privacy, it is important that all electronic transactions can be performed
without revealing more personal information than is absolutely necessary. In this paper we consider
the case of access to a database where the different records in the database have different access
control conditions. These conditions could be certain attributes, roles, or rights that a user needs
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to have to access the records. The assigning of attributes to users is done by a separate entity
called the issuer, external to the database. To provide the maximal amount of privacy, a protocol
is required such that:

• Only users satisfying the access conditions for a record can access that record;

• The service (database) provider does not learn which record a user accesses;

• The service (database) provider shall not learn which attributes, roles, etc. a user has when
she accesses a record, i.e., access shall be completely anonymous, nor shall it learn which
attributes the user was required to have to access the record.

One real-life example where such a protocol is important are DNA databases, containing in-
formation about the purpose of each gene. Such databases are extremely valuable and thus there
are not sold on a whole, but rather customers are charged per access to the database. On the
other hand, the particular DNA sequences accessed by a customer reveal a lot of information about
her interests, e.g., for which disease it is developing medication. Moreover, it is quite likely that
subscription prices vary with the different species. Using our protocol, the database can charge
different rates for the DNA sequences of mice and apes, without forcing its customers to reveal
which species they’re interested in.

Other examples of databases where users have an interest to keep their queries hidden are stock
quotes, since they can reveal information about their investment strategy, and patent search, since
they can reveal sensitive business information. Our protocol directly addresses these problems and
provides a practical solution for it.

1.1 Construction Overview

We now describe the main ideas underlying our protocol. We build upon the oblivious transfer
protocol by Camenisch, Neven, and Shelat [14] which we describe first. In their scheme, the server
first encrypts each record with a unique key and publishes these encryptions. The encryption key
is derived from the index of the record and a secret of the database server. Although the secret of
the database is the same for all record keys, it is not possible to derive the encryption key for one
record from that of another record. Thus, to be able to access a record, a user needs to retrieve the
corresponding key from the server. To this end, Camenisch et al. give a protocol ensuring that 1)
the user can retrieve exactly one key per protocol run and 2) the server does not learn which key
the user obtained.

The main ideas of our scheme are as follows. First, we issue anonymous credentials [19, 20, 26,
22, 8, 31, 11] to a user, each certifying a category of records the user is allowed to access. Recall that
anonymous credentials allow the user to later prove that she possesses a credential without revealing
any other information whatsoever. We note that the name “category” is inspired by the different
data categories that a user is allowed to access. However, the category could just as well encode the
right, role, or attribute that a user needs to have in order to access a record. In the following we
will only use the word category, however. Also, note that if a record has several categories attached
to it, then the user must have a credential for all these categories, basically implementing an AND
condition. If one would want to specify an OR condition, one could duplicate the record in the
database with a second set of categories.

To allow the user oblivious access a record for which she has the necessary credentials, we extend
the Camenisch et al. oblivious transfer protocol in two ways: 1) The keys for a record are derived
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Figure 1: Access control graphs when implementing AC-OT using Coull et al.’s protcol for database
(R1, {c1}), (R2, {c2}), (R3, {c1, c2}), (R4, {c1, c3}).

not only from the index of the record and the secret key of the server but also from the categories
of the record. 2) We extend the protocol so that the user, while retrieving a key, gives a zero-
knowledge proof of knowledge that she possess credentials on all the categories that are encoded
into the key that she wants to retrieve. Using anonymous credentials and the specific features of
the Camenisch et al. protocol, we can do this without letting the server learn the categories nor
any other information about the key which the user obtains trough the protocol.

1.2 Related Work

There is of course a large body of works on oblivious transfer which per se offers users access
to a database without the server learning the contents of the query. In its basic form, oblivious
transfer puts no restrictions on which records a particular user can access, i.e., all users can access
all records. There are a couple of papers that consider oblivious transfer with access control, each
of them, however, aiming at a goal different from ours.

Aiello, Ishai, and Reingold [1] present priced oblivious transfer. Here, each record has attached a
(possibly different) price. The user holds a (homomorphically) encrypted balance which is reduced
with each transfer. Thus, the user can only retrieve records as long as her balance is positive.
Another related flavor is conditional oblivious transfer, proposed by Di Crescenzo, Ostrovsky, and
Rajagopolan [27], where access to a record is only granted if the user’s secret satisfies some given
predicate. However, none of these protocols offer anonymity to the users.

Herranz [30] proposes restricted oblivious transfer, which also protects each record with an
access control policy. In his case the policy consists of a list saying which user has access to which
record, and the user authenticates to the server openly. In contrast, our protocol employs a more
powerful attribute-based access control paradigm, and guarantees user anonymity.

To the best of our knowledge, the only paper considering oblivious transfer with access control
is the recent work by Coull, Green, and Hohenberger [23]. They propose a scheme for controlling
access to records using state graphs. With each access a user transitions from one state to another,
where the transition is defined by the index of the record the user has accessed. By restricting the
between states, a user being in a particular state can only access the records corresponding to the
possible transitions.
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An exact comparison between our protocol and that of [23] depends on the particular access
structure of the database and on how the AC-OT primitive is translated into a graph structure. In
general however, our protocol is more efficient because it avoids re-issuing user credentials at each
transfer. We discuss two ways of implementing AC-OT using Coull et al.’s protocol below.

One approach (see Approach 1 in Figure 1) could be to assign a state to each subset of categories
that a user could have access to, with a self-loop for each record that can be accessed using this
subset. When given access to a new category, the user is re-initialized in the state representing her
new set of categories. For a database of N records and C different categories, this yields a graph of
2C nodes and up to N edges per node, yielding an encrypted database size of O(2CN) using Coull
et al.’s protocol, versus O(N) using ours.

Another approach (Approach 2 in Figure 1) could be to assign a state to each subset of categories
that appears as an access control list in the database, and a self-loop for each record having that
access control list. Users are in multiple states simultaneously, namely in all those corresponding
to access control policies that they satisfy. This yields a graph of up to N nodes and N edges
total, reducing the encrypted database size to O(N), but requires users to store up to min(2C , N)
different credentials, and partly destroys the intuitive aspect of using data categories for access
control.

2 Definition of AC-OT

2.1 Overview

An oblivious transfer protocol with access control (AC-OT) is run between the following parties:

• users (U1, . . ., UM ) known by pseudonyms;

• an issuer I providing access credentials to users for the data categories that they are entitled
to access;

• a database DB hosting the list of records and giving users access to those records that they
are entitled to access.

In a nutshell, an oblivious transfer protocol with access control works as follows.

1. The issuer I generates his key pair for issuing credentials and publishes the public key as a
system-wide parameter.

2. The database server initiates a database containing records protected by access control lists:
generates the encrypted database and makes it available to all users, e.g. by posting it on a
website.

3. Users contact the issuer to obtain credentials for the data categories that they want or are
entitled to access.

4. When a user wants to access a record in the database, she proves to the database, in a zero-
knowlege way, that she possesses credentials for all categories associated with this record. If
she succeeds then she can decrypt that record, otherwise, she cannot. The database learns
nothing about the index of the record that is being accessed, nor about the categories asso-
ciated to the record.
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2.2 Syntax

If κ ∈ N, then 1κ is the string consisting of κ ones. The empty string is denoted ε. If A is a

randomized algorithm, then y
$
← A(x) denotes the assignment to y of the output of A on input x

when run with fresh random coins.

Unless noted, all algorithms are probabilistic polynomial-time (PPT) and we implicitly assume
they take an extra parameter 1κ in their input, where κ is a security parameter. A function
ν : N → [0, 1] is negligible if for all c ∈ N there exists a κc ∈ N such that ν(κ) < κ−c for all κ > κc.

We consider a setting with one issuer, one database, and one or more users. Data categories are
bit strings taken from the category universe C ⊆ {0, 1}∗. A database consists of a list of N couples
((R1,ACL1), . . . , (RN ,ACLN )), containing database records R1, . . . , RN ∈ {0, 1}∗ and associated
access control lists ACL1, . . . ,ACLN ⊆ C . The semantics of the access control lists is that only
users who have credentials for all data categories in ACLi can access Ri. In other words, the access
control list is a conjunction of keywords; disjunctions can be realized by letting the same record
appear multiple times in the database. Finally, users interact with the database directly to obtain
those records that they are entitled to receive.

An adaptive oblivious transfer protocol with access control (AC-OT) for category universe
C ⊆ {0, 1}∗ is a tuple of polynomial-time algorithms and protocols AC -OT = (ISetup, Issue, DBSetup,
Transfer).

• ISetup(C )
$
→ (pk I, sk I)

The issuer runs the randomized ISetup algorithm to generate a public key pk I and correspond-
ing secret key sk I for security parameter κ and category universe C . He publishes the public
key as a system-wide parameter.

• Issue: Common input: pk I, c
Issuer input: sk I

User input: stU
User output: cred c or ⊥, stU

′

A user obtains an access credential for data category c ∈ C by engaging in the Issue protocol
with the issuer. The issuer’s public key pk I and the data category c are common inputs. The
issuer uses his secret key sk I as an input and the user possibly maintains his state stU. At the
end of the protocol, the user obtains the access credential cred c and the updated state stU

′.

• DBSetup
(

pk I,DB = (Ri,ACLi)i=1,...,N

) $
→

(

(pkDB,ER1, . . . ,ERN ), skDB

)

To initiate a database containing records R1, . . . , RN protected by access control lists
ACL1, . . . ,ACLN , the database server runs the DBSetup algorithm. This generates the en-
crypted database consisting of a public key pkDB and encrypted records ER1, . . . ,ERN . The
encrypted database is made available to all users, e.g. by posting it on a website.1 The server
keeps the secret key to the database skDB for itself.

1We assume that each user obtains a copy of the entire encrypted database. It is impossible to obtaining our
strong privacy requirements with a single database server without running into either computation or communication
complexity that is linear in the database size.

5



• Transfer: Common input: pk I, pkDB

User input: σ,ERσ,ACLσ, {cred c}c∈ACLσ , stU
Database input: skDB

User output: Rσ or ⊥, stU
′

When the user wants to access a record in the database, she engages in a Transfer protocol
with the database server. Common inputs are the issuer’s public key pk I and that of the
database pkDB. The user has as a secret input her selection index σ ∈ {1, . . . , N}, the
required credentials cred c for all c ∈ ACLσ, and possibly state information stU. The database
server uses its secret key skDB as a private input. At the end of the protocol, the user obtains
the database record Rσ or ⊥ indicating failure, and updated state stU

′.

We assume that all communication links are private. We also assume that the communication links
between a user and the issuer are authenticated, so that the issuer always knows which user it is
handing a credential to. The communication links between a user and the database are assumed to
be anonymous however, so that the database does not know which user is making a record query.
(Authenticated communication channels between users and the database would obviously ruin the
strong anonymity properties of our protocol.)

2.3 Security

We define security of an AC-OT protocol through indistinguishability of a real-world and an ideal-
world experiment as introduced by the UC framework [17, 18] and the reactive systems security
models [32, 33]. The definitions we give, however, do not entail all formalities necessary to fit one
of these frameworks; our goal here is solely to prove security of our scheme.

We summarize the ideas underlying these models. In the real world there are a number of
players, who run some cryptographic protocols with each other, an adversary A, who controls some
of the players, and an environment E . The environment provides the inputs to the honest players
and receives their outputs and interacts arbitrarily with the adversary. The dishonest players are
subsumed into the adversary.

In the ideal system, we have the same players. However, they do not run any cryptographic
protocols but send all their inputs to and receive all their outputs from an ideal all-trusted party T.
This party computes the output of the players from their inputs, i.e., applies the functionality that
the cryptographic protocol(s) are supposed to realize. The environment again provides the inputs
to and receives the output from the honest players, and interacts arbitrarily with the adversary
controlling the dishonest players.

A (set of) cryptographic protocol(s) is said to securely implement a functionality if for every
real-world adversary A and every environment E there exists an ideal-world simulator A′ controlling
the same parties in the ideal world as A does in the real world such that the environment cannot
distinguish whether it is run in the real world interacting with A or whether it is run in the ideal
world interacting with the simulator A′.

Definition 2.1 Let RealE,A(κ) denote the probability that E outputs 1 when run in the real
world with A and IdealE,A′(κ) denotes the probability that E outputs 1 when run in the ideal
world interacting with A′, then the (set of) cryptographic protocols is said to securely implement
the functionality T if

RealE,A(κ) − IdealE,A′(κ)

is a negligible function in κ.
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The real world. We first describe how the real world algorithms presented in §2.2 are orches-
trated when all participants are honest, i.e., honest real-world users U1, . . .UM , an honest issuer
I, and an honest database DB. Parties controlled by the real-world adversary A can arbitrarily
deviate from the behavior described below.

All begins with the issuer I generating a key pair (pk I, sk I)
$
← Issue(1κ, C ) and sending pk I to

all users U1, . . . ,UM and the database DB.
When the environment E sends a message (initdb,DB = (Ri,ACLi)i=1,...,N ) to the database

DB, the latter encrypts DB by running (EDB , skDB)
$
← DBSetup(pk I,DB), and sends the encrypted

database EDB = (pkDB,ER1, . . .ERN ) to all users U1, . . . ,UM .
When E sends a message (issue, c) to user Uj , Uj engages in an Issue protocol with I on common

input pk I and category c, with I using sk I as its secret input, at the end of which Uj obtains the
access credential cred ci . User Uj returns a bit b to the environment indicating whether the issue
protocol succeeded (b = 1) or failed (b = 0).

When E sends a message (transfer, σ) to user Uj , then Uj first checks whether it has the nec-
essary credentials {cred c}c∈ACLσ to access record Rσ. If so, she engages in a Transfer protocol with
DB on common input pk I, pkDB, on Uj ’s private input σ and the relevant credentials {cred c}c∈ACLσ ,
and on DB’s private input skDB, until Uj obtains the record Rσ, or ⊥ indicating failure. If the
transfer succeeded she returns Rσ to the environment; if it failed, or the user didn’t have the
appropriate credentials, she returns ⊥ to the environment.

We note that I and DB do not return any outputs to the environment.

The ideal world. In the ideal world all participants communicate through a trusted party T

which implements the functionality of our protocol. We describe the behavior of T on the inputs
of the ideal-world users U′

1, . . . ,U
′
M , the ideal-world issuer I′, and the ideal-world database DB′.

The trusted party T maintains an initially empty set Ci for each user U′
i and sets DB ← ⊥. It

responds to queries from the different parties as follows.

• Upon receiving (initdb, (Ri,ACLi)i=1,...,N ) from DB′, T sets DB ← (Ri,ACLi)i=1,...,N .

• Upon receiving (issue, c) from U′
i, T sends (issue, U′

i, c) = arg to I′ who sends back a bit b.
If b = 1 then the T adds c to Ci and sends b to U′

i; otherwise it simply sends b to U′
i.

• Upon receiving (transfer, σ) from U′
i, T proceeds as follows. If DB 6= ⊥, it sends transfer

to DB′, who sends back a bit b. If b = 1 and ACLσ ⊆ Ci, then it sends the record Rσ to U′
i.

If b = 0 or DB = ⊥ it sends ⊥ to U′
i.

The ideal-world parties U′
1, . . . ,U

′
M , I, DB simply relay inputs and outputs between the environ-

ment E and the trusted party T.

Security Properties. Let us discuss some of the security properties that the ideal world (and
therefore also any secure real-world implementation) offers to the parties. It is easy to verify that
these properties hold for the ideal world.

User Privacy: The database cannot tell which user makes a query, nor can it tell which record
is being accessed. That is, the database only gets to know that some user accesses some
record for which the user priorly obtained the necessary credentials. If the database colludes
with the issuer and potentially with other users, then they can only try to identify the user
or her selection based on which credentials were issued to whom, and which credentials are
necessary to successfully access which record.
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Database Security: A cheating user alone cannot access a record for which she does not have
the necessary credentials. Colluding users cannot pool their credentials, meaning that they
cannot access any records that none of them would have been able to obtain individually. If
the issuer colludes with one or more users, they can only obtain as many records from the
database as the number of transfer queries that were performed.

3 Preliminaries

Let Pg(1κ) be a pairing group generator that on input 1κ outputs descriptions of multiplicative
groups G1, GT of prime order p where |p| > κ. Let Pg(p) be a pairing group generator that on
input p outputs descriptions of multiplicative groups G1, GT of prime order p.

Let G
∗
1 = G1\{1} and let g ∈ G

∗
1. The generated groups are such that there exists an admissible

bilinear map e : G1×G1 → GT, meaning that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab;
(2) e(g, g) 6= 1; and (3) the bilinear map is efficiently computable.

Definition 3.1 We say that the ℓ-strong Diffie-Hellman (ℓ-SDH) assumption [4] holds in group
G1 of order p > 2κ if for all polynomial-time adversaries A the advantage

AdvℓSDH
G1

(κ) = Pr
[

A(g, gx, . . . , gxℓ
) = (c, g1/(x+c))

]

is a negligible function in κ, where g
$
← G

∗
1 and x, c

$
← Zp.

Definition 3.2 We say that the decision ℓ-bilinear Diffie-Hellman exponent (ℓ-BDHE) assump-
tion [6] holds in groups G1, GT of order p > 2κ if for all polynomial-time adversaries A the advantage
AdvℓBDHE

G1,GT
(κ) given by

Pr
[

A(g, h, gα, . . . , gαℓ−1

, gαℓ+1

, . . . , gα2ℓ
, e(g, h)αℓ

) = 1
]

− Pr
[

A(g, h, gα, . . . , gαℓ−1

, gαℓ+1

, . . . , gα2ℓ
, S) = 1

]

is a negligible function in κ, where g, h
$
← G

∗
1, S

$
← G

∗
T and α

$
← Zp

Definition 3.3 We say that the ℓ-power decision Diffie-Hellman (ℓ-PDDH) assumption [14] holds
in groups G1, GT if for all polynomial-time adversaries A the advantage AdvℓPDDH

G1,GT
(κ) given by

Pr
[

A(g, gα, . . . , gαℓ
, H, Hα, Hα2

. . . , Hαℓ
) = 1

]

− Pr
[

A(g, gα, . . . , gαℓ
, H, H1, . . . , Hℓ) = 1

]

is a negligible function in κ, where g
$
← G

∗
1, H, H1, . . . , Hℓ

$
← G

∗
T and α

$
← Zp.

The ℓ-PDDH assumption is actually implied by the simpler ℓ-BDHE assumption, as kindly
pointed out to us in personal communication by Brent Waters. For ease of presentation we use the
PDDH assumption in security proofs; security under the BDHE assumption automatically follows.

Theorem 3.4 If the (ℓ + 1)-BDHE assumption holds in groups G1, GT, then the ℓ-PDDH also
holds in G1, GT. More precisely,

AdvℓPDDH
G1,GT

(κ) ≤ ℓ · Adv
(ℓ+1)BDHE
G1,GT

(κ) .
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Proof of (due to Brent Waters): The proof employs a hybrid argument. Consider the
sequence of games Game-i for i = 1, . . . , ℓ where an adversary A is given as input a tuple

(g, gα, gα2

, . . . , gαℓ
, H, Hα, Hα2

, . . . , Hαi
, Hi+1, . . . , Hℓ), where H, Hi+1, . . . , Hℓ

$
← GT and the other

inputs are as in the ℓ-PDDH game.

The ℓ-PDDH assumption says that it is hard to distinguish between Game-0 and Game-ℓ. If
algorithm A breaks the ℓ-PDDH assumption with advantage ǫ, then there must exist some i ∈
{0, . . . , ℓ} such that A distinguishes Game-i from Game-(i + 1) with probability ǫ/ℓ. Given this
algorithm A, consider the following adversary B against the (ℓ + 1)-BDHE assumption.

On input (g, h, gα, gα2

, . . . , gαℓ
, gαℓ+2

, . . . , gα2ℓ+2

, S), algorithm B has to decide whether S = e(g, h)αℓ+1

or random. It sets H ← e(gαℓ−i
, h), Hj ← e(gαℓ−i+j

, h) for j = 1, . . . , i, and chooses Hj
$
← GT for

j = i + 2, . . . , ℓ. It then runs A on input (g, gα, gα2

, . . . , gαℓ
, H, H1, . . . , Hi, S, Hi+2, . . . , Hℓ) to A.

It is clear that if S = e(g, h)αℓ+1

then B perfectly simulates Game-i , while if S is random then
it perfectly simulates Game-i + 1. It can therefore win its own game with probability ǫ/ℓ simply
outputting whatever A outputs.

3.1 Modified Boneh-Boyen Signatures

We use the following modification of the weakly-secure signature scheme by Boneh and Boyen [4].
The scheme uses a pairing generator Pg as defined above.

The signer’s secret key is (xm, x1, . . . , xl)
$
← Zp, the corresponding public key is (g, ym =

gxm , y1 = gx1 , . . . , yl = gxl) where g is a random generator of G1. The signature on the tuple of
messages (m, c1, . . . , cl) is the following s ← g1/(xm+m+x1c1+...+xlcl); verification is done by checking
whether e(s, ym · gm · yc1

1 · . . . · ycl
l ) = e(g, g) is true.

Security against weak chosen-message attacks is defined through the following game. The
adversary begins by outputting N tuples of messages ((m1, c1,1, . . . , c1,l), . . . , (mN , cN,1, . . . , cN,l)).
The challenger then generates the key pair and gives the public key to the adversary, together with
signatures s1, . . . , sN on the message tuples. The adversary wins if it succeeds in outputting a valid
signature s on a tuple (m, c1, . . . , cl) 6∈ {(m1, c1,1, . . . , c1,l), . . . , (mN , cN,1, . . . , cN,l)}.

The scheme is said to be unforgeable under weak chosen-message attack if no PPT adversary
has non-negligible probability of winning this game. An adaptation of the proof of [4] can be used
to show that this scheme is unforgeable under weak chosen-message attack if the (N + 1)-SDH
assumption holds. The proof is provided in Appendix ?? for completeness.

3.2 Zero-Knowledge Proofs and Σ-Protocols

We use various zero-knowledge proofs of knowledge [3, 24] protocols to prove knowledge of and
statement about discrete logarithms such as (1) proof of knowledge of a discrete logarithm modulo
a prime [34], (2) proof of knowledge of equality of (elements of) representations [21] , (3) proof that
a commitment opens to the product of two other committed values [7, 13, 16], and also (4) proof
of the disjunction or conjunction of any two of the previous [25].

When referring to the proofs above, we will follow the notation introduced by Camenisch and
Stadler [15] and formally defined by Camenisch, Kiayias, and Yung [10]. For instance, PK{(a, b, c) :
y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-knowledge Proof of Knowledge of integers a, b, c such that

y = gahb and ỹ = g̃ah̃c holds,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G = 〈g〉 = 〈h〉
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and G̃ = 〈g̃〉 = 〈h̃〉. The convention is that the letters in the parenthesis (a, b, c) denote quantities
of which knowledge is being proven, while all other values are known to the verifier.

Given a protocol in this notation, it is straightforward to derive actual protocol implementing
the proof. Indeed, the computational complexities of the proof protocol can be easily derived
from this notation: basically for each term y = gahb, the prover and the verifier have to perform
an equivalent computation, and to transmit one group element and one response value for each
exponent. We refer to, e.g., Camenisch, Kiayias, and Yung [10] for details on this.

3.3 Credential Signature Scheme

We use the signature scheme proposed and proved secure by Au et al. [2], which is based on the
schemes of Camenisch and Lysyankaya [12] and of Boneh et al. [5].

It assumes cyclic groups G and GT of order p and a bilinear map e : G × G → GT. The

signer’s secret key is a random element x
$
← Zq. The public key contains a number of random bases

g1, h0, . . . , hℓ, hℓ+1
$
← G, where ℓ ∈ N is a parameter, and y ← gx

1 .

A signature on messages m0, . . . , mℓ ∈ Zp is a tuple (A, r, s) where r, s
$
← Zp are values chosen

at random by the signer and A = (g1h
m0

0 · · ·hmℓ
ℓ hr

ℓ+1)
1/(x+s). Such a signature can be verified by

checking whether e(A, gs
1y) = e(g1h

m0

0 · · ·hmℓ
ℓ hr

ℓ+1, g1) .

Now assume that we are given a signature (A, r, s) on messages m0 . . . , mℓ ∈ Zp and want to
prove that we indeed possess such a signature. To this end, we need to augment the public key with
values u, v ∈ G such that logg1

u and logg1
v are not known. This can be done by choosing random

values t, t′
$
← Zp, computing Ã = Aut, B = vtut′ and executing the following proof of knowledge

PK{(α, β, s, t, t′, m0, . . . , mℓ, r) : B = vtut′ ∧ 1 = B−svαuβ ∧
e(Ã,y)

e(g1,g1) = e(Ã, g1)
−se(u, y)te(u, g1)

αe(hℓ+1, g1)
r
∏ℓ

i=0 e(hi, g1)
mi},

where α = st and β = st′.

It was proved in [2] that the above signature is unforgeable under adaptively chosen message at-
tack if q-SDH assumption holds, where q is the number of signature queries, and that the associated
PoK is perfect honest-verifier zero-knowledge.

4 Our Construction

We now describe our scheme in detail. We model access control lists as tuples of exactly ℓ categories
ACLi = (ci1, . . . , ciℓ) ∈ C ℓ. A record can therefore be associated with at most ℓ categories; unused
entries are filled with a dummy category cij = dummy for which we assume every user is given a
credential for free. To issue anonymous credentials we employ the signature scheme presented in
Section 3.3. and to implement the oblivious access control we extend the protocol by Camenisch
et al. [14]. We will also use a number of proof protocols about discrete logarithms as described in
Section 3.2.
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Initial Setup We now describe the setup procedures of the issuer and the database provider.
Users do not have their own setup procedure.

ISetup(C ):

(G, GT, p)
$
← Pg(1κ) ; gt, ht

$
← GT

∗ ; g1, h0, h1, h2, u, v
$
← G

∗

xI
$
← Zp ; yI ← gxI

1

sk I ← xI ; pk I ← (g1, h0, h1, h2, u, v, w, gt, ht, yI)
Return (sk I, pk I)

Figure 2: Issuer Setup algorithm

To set up its keys, the issuer runs the randomized ISetup algorithm displayed in Figure 2. This
will generate groups of prime order p, a public key pk I and corresponding secret key sk I for security
parameter κ and category universe C . He publishes the public key as a system-wide parameter.

DBSetup
(

pk I,DB = (Ri,ACLi)i=1,...,N

)

:

(G, GT)
$
← Pg(p) ; g, h

$
← G

∗

; H ← e(g, h)

xDB

$
← Zp ; yDB ← gxDB

For i = 1, . . . , ℓ do

xi
$
← Zp ; yi ← gxi

skDB ← (h, xDB, x1, . . . , xℓ) ; pkDB ← (g,H, yDB, y1, . . . , yℓ)
For i = 1, . . . , N do

Parse ACLi as (ci1, . . . ciℓ)

Ei ← g
1

xDB+i+
∑ℓ

j=1
xj ·cij

Fi ← e(h,Ei) · Ri

ERi ← (Ei, Fi)
Return

(

(pkDB,ER1, . . . ,ERN ), skDB

)

Figure 3: Database Setup algorithm

To set up the database, the database provider runs the algorithm shown in Figure 3. That is,
it uses the issuer’s public key and a pairing group generator to create goups of the same order p
and generate keys for encrypting records. First the database provider chooses its secret key xDB.
Next he encrypts each record Ri as (Ei, Fi), each with its own key. These keys not only depend on
the database provider’s secret key (xDB), but also on the index of the record (i) and the categories
defined in the access control policy for the record ({xc}c∈

⋃N
i=1 ACLi

). The pairs (Ei, Fi) can be

seen as an ElGamal encryption [29] in GT of Ri under the public key H. But instead of using
random elements from GT as the first component, our protocol uses verifiably random [28] values

Ei = g
1

xDB+i+
∑ℓ

j=1
xj ·cij . It is this verifiability that during the transfer phase allows the database

to check that the user is indeed asking for the decryption key for one particular records with a
particular access control policy for which user has appropriate credentials.
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Issuing Credentials To be able to make database queries, a user needs to obtain the credentials
for the categories she is allowed to access. To this end, the user runs the Issue protocol with the
issuer as depicted in Figure 4. We leave open how the issuer determines which user has access to
which categories, but we do assume that the communication links are authenticated so that the
issuer knows which user it is talking to.

Issue() :

U(c, stU, pk I) : I(sk I, pk I, c, [P ]) :

If (stU = ⊥) then

zU

$
← Zp ; P ← hzU

0
P

- If P already assigned
stU ← (zU, P, 0, ∅, ∅) then return ⊥

Parse stU as (zU, P, fDB , CU,CredU)
PK{(zU) : P = hzU

0
}

- sc, rc
$
← Zp

sc, Ac
¾ Ac ← (g1Phc

1
hrc

2
)

1
xI+sc

If e(Ac, g
sc

1
yI) = e(g1Phc

1
hrc

2
, g1) then

CU ← CU ∪ {c} ; CredU ← CredU ∪ {(Ac, sc, rc)}
Return stU ← (zU, P, fDB , CU,CredU)

Figure 4: Issue protocol

Apart from the issuer’s public key, the user’s input also includes her state stU = (zU, P, fDB , CU,
CredU), which is a tuple containing her master secret, her pseudonym, a bit fDB indicating whether
she already accessed the database, the set of categories CU to which she currently has access, and
the corresponding credentials CredU. The input of the issuer contains his secret and public key, the
category c for which the user wants a credential, and the pseudonym P of the user, if she registered
one before.

If the user runs the issuing protocol for the first time, her input will contain the empty state
(stU = ⊥). In this case, the user first generates her master secret zU and calculates her pseudonym
P = hzU

0 , sends P to the issuer, and then initializes her state as stU = (zU, P, 0, ∅, ∅).
As a result of the issuing protocol, the user will obtain an access credential for the category

c ∈ C . This credential is a tuple cred c = (Ac, sc, rc) which can be verified by checking e(Ac, g
sc
1 yI) =

e(g1Phc
1h

rc
2 , g1). We assume that the user and the issuer run the issuing protocol for each category

for which the user is allowed to obtain a credential individually. It is not hard to see how to issue
the credentials for all of the user’s categories at once.

We note that credential (Ac, sc, rc) is a signature as defined in Section 3.3 on the set of messages
(zU, c), where zU is the user’s master secret.

Accessing a Record When the user wants to access a record in the database, she engages in a
Transfer protocol (Figure 5) with the database server.

The input of the database server is her secret and public key as well as the public key of the
issuer. The input of the user is the index σ of the record that she wants to access, the encryption
ERσ = (Eσ, Fσ) of that record, the access control policy of the records, her state (containing all
her credential), and the public keys of the issuer and the database.

If this is the first transfer protocol she executes with this database (i.e., fDB = 0), then the user
asks the database to execute a proof of knowledge of the database secret key h. This zero-knowledge
proof will enable to decrypt the contents of the database in the security proof.
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Transfer() :

DB(skDB, pkDB, pk I) : U (σ, stU, pk I, pkDB,ERσ,ACLσ) :

Parse stU as (zU, P, fDB , CU,CredU)
If ACLσ 6⊆ CU then abort

K, fDB
¾ k

$
← Zp ; K ← (Eσ)k

If(fDB = 0) then PK{(h) : H = e(g, h)}
- fDB ← 1

Parse ACLσ as {c1, . . . , cℓ}
For i = 1, . . . , ℓ do

ti, t
′

i
$
← Zp ; Ãi ← Aci

uti ; Bi ← vtiut′i

(Ãi, Bi)i=1,...,ℓ
¾

PK

{

(

σ, k, zU, (ci, sci
, rci

, ti, t
′

i, αi, βi)i=1,...,ℓ

)

:

e(K, yDB)e(K, g)σ ∏ℓ
i=1

e(K, yi)
ci = e(g, g)k

∧ℓ
i=1

(

Bi = vtiut′i ∧ 1 = B
−sci
i vαiuβi ∧

e(Ãi, yI)

e(g1, g1)
= e(Ãi, g1)

−sci e(u, yI)
tie(u, g1)

αie(h2, g1)
rci e(h0, g1)

zUe(h1, g1)
ci

)}

¾

L ← e(h, K) L, PK{(h) : H = e(g, h) ∧ L = e(h, K)}
- Rσ ← Fσ/(L1/k)

Return ε Return Rσ

Figure 5: Transfer protocol

Then the user randomizes Eσ and sends this randomized version K to the database. Note
that Eσ is derived from the database provider’s secret key, the index of the records, and, most
importantly all the categories of the record.

Next the user proves that K is correctly formed as a randomization of some Ei for which she
possesses all necessary credentials. If the database provider accepts the proof, it computes L from
h and K, sends L to the user, and proves that L was computed correctly. The protocol is easily
seen to be correct by observing that L = e(h, Eσ)k, so therefore Fσ/L1/k = Rσ.

5 Security Analysis
The security of our protocol is analyzed by proving indistinguishability between adversary actions
in the real protocol and in an ideal scenario that is secure by definition.

Given a real-world adversary A, we construct an ideal-world adversary A′ such that no environ-
ment E can distinguish whether it is interacting with A or A′. We organize the proof in sublemmas
according to which subset of parties are corrupted. We do not consider the cases where all parties
are honest, where all parties are dishonest, where the issuer is the only honest party, or where the
issuer is the only dishonest party, as these cases have no real practical interest.

For each case we prove the indistinguishability between the real and ideal worlds by defining
a sequence of hybrid games Game-0, . . . ,Game-n. In each game we define a simulator Simi that
runs A as a subroutine and that provides E ’s entire view. We define HybridE,Simi

(κ) to be the
probability that E outputs 1 when run in the world provided by Simi. The games are always
constructed such that the first simulator Sim0 runs A and all honest parties exactly like in the
real world, so that HybridE,Sim0

(κ) = RealE,A(κ) , and such that the final simulator Simn is
easily transformed into an ideal-world adversary A′ so that HybridE,Simn

(κ) = IdealE,A′(κ) . By
upper-bounding and summing the mutual game distances HybridE,Simi

(κ)−HybridE,Simi+1
(κ) for

i = 0, . . . , n − 1, we obtain an upper bound for the overall distance RealE,A(κ) − IdealE,A′(κ) .
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Theorem 5.1 If the (N +2)-BDHE assumption holds in G1, GT and the q-SDH assumption holds
in G1, then the AC -OT protocol depicted in Figures 1–4 securely implements the AC-OT func-
tionality, where N is the number of database records, qI is the number of issued credentials, and
q = max(qI, N + 1).

We prove the theorem by separately proving it for all relevant combinations of corrupted parties
in the lemmas below.

Lemma 5.2 For all environments E and all real-world adversaries A controlling the issuer and the
database there exists an ideal-world adversary A′ such that

RealE,A(κ) − IdealE,A′(κ) ≤ 2−κ

Proof: Since the adversary can always simulate additional users himself, we can simplify the setting
to a single honest user U.

Game-1 : Simulator Sim1, at the first transfer query dictated by E , runs the extractor for the proof
of knowledge PK{(h) : H = e(g, h)} to extract from A the element h such that e(g, h) = H. If
the extractor fails, then Sim1 outputs ⊥ to E ; otherwise, it continues to run A interacting with
the honest user algorithm. The difference between the two games is given by the knowledge
error of the proof of knowledge, i.e.,

HybridE,Sim0
(κ) − HybridE,Sim1

(κ) ≤ 2−κ .

Game-2 : Simulator Sim2 runs exactly like Sim1, except that during each transfer phase it lets
the user algorithm query a record Rj chosen at random among those for which it has the
necessary credentials, rather than querying σi as imposed by E . We claim that

HybridE,Sim1
(κ) = HybridE,Sim2

(κ) .

The claim follows from the (perfect) zero-knowledgeness of the proof of knowledge of
(σ, k, zU, . . .) [2].

We now construct, based on the real-world adversary A, an ideal-world adversary A′ that plays the
simultaneous roles of the issuer and the database, and that incorporates all steps from the last game.
The adversary A′ simply relays all messages between the environment E and A. A′ runs A to obtain
the issuer’s public key pk I and the encrypted database EDB = (pkDB, (E1, F1), . . . , (EN , FN )).
Upon receiving (issue, U′, c) from T, it executes the user’s side of the issue protocol with A,
maintaining state as necessary. If the resulting credential is valid, A′ returns b = 1 to T, otherwise
it returns b = 0. The first time it receives a message transfer from T, A′ extracts h from A

in the first proof of knowledge, uses it to decrypt Ri as Fi/e(h, Ei) for i = 1, . . . , N and sends
(initdb, Ri,ACLi)i=1,...,N to T. It then simulates an honest user querying for record Rj chosen at
random among those for which it has the necessary credentials. If the transfer succeeds, A′ sends
b = 1 back to T; if it fails, it sends back b = 0. Later transfer queries are treated the same way,
but without the first step of decrypting the database.
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One can see that A′ provides A with exactly the same environment as Sim2 did, so we have

IdealE,A′(κ) = HybridE,Sim2
(κ) .

Summing up all the above equations yields the lemma statement.

Lemma 5.3 For all environments E and all real-world adversaries A controlling only the database
there exists an ideal-world adversary A′ such that

RealE,A(κ) − IdealE,A′(κ) ≤ 2−κ

Proof: Since the adversary can always simulate additional users himself, here we also consider a
simplified model with a single honest user U.

Game-0 : Simulator Sim0 runs the adversary A, the honest user U and the honest issuer I exactly
as in the real world, based on the input queries dictated by E , so that

HybridE,Sim0
(κ) = RealE,A(κ) .

Game-1 : Simulator Sim1, at the first transfer query dictated by E , runs the extractor for the proof
of knowledge PK{(h) : H = e(g, h)} to extract from A the element h such that e(g, h) = H. If
the extractor fails, then Sim1 outputs ⊥ to E ; otherwise, it continues to run A interacting with
the honest user algorithm. The difference between the two games is given by the knowledge
error of the proof of knowledge, i.e.,

HybridE,Sim0
(κ) − HybridE,Sim1

(κ) ≤ 2−κ .

Game-2 : Simulator Sim2 runs exactly like Sim1, except that during each transfer phase it lets
the user algorithm query a record Rj chosen at random among those for which it has the
necessary credentials, rather than querying σi as imposed by E . We claim that

HybridE,Sim1
(κ) = HybridE,Sim2

(κ) .

The claim follows directly from the zero-knowledgeness of the proof of knowledge of (σ, k, zU, ..)
which includes perfect zero-knowledge proof of possessing a credential signature.

We now construct, based on the real-world adversary A, an ideal-world adversary A′ that plays
only the role of the database, and that incorporates all steps from the last game. The adversary
A′ simply relays all messages between the environment E and A. A′ runs A to obtain the issuer’s
public key pk I and the encrypted database EDB = (pkDB, (E1, F1), . . . , (EN , FN )). The first time
it receives a message transfer from T, A′ extracts h from A in the first proof of knowledge, uses
it to decrypt Ri as Fi/e(h, Ei) for i = 1, . . . , N and sends (initdb, Ri,ACLi)i=1,...,N to T. It then
simulates an honest user querying for record Rj chosen at random among those for which it has
the necessary credentials. If the transfer succeeds, A′ sends b = 1 back to T; if it fails, it sends back
b = 0. Later transfer queries are treated the same way, but without the first step of decrypting
the database.
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One can see that A′ provides A with exactly the same environment as Sim2 did, so we have

IdealE,A′(κ) = HybridE,Sim2
(κ) .

Summing up all the above equations yields the lemma statement.

Lemma 5.4 For all environments E and all real-world adversaries A controlling only some of the
users, there exists an ideal-world adversary A′ such that

RealE,A(κ) − IdealE,A′(κ) ≤ 2−κ · qT + AdvqI-SDH
G1

(κ)

+ Adv
(N+1)SDH
G1

(κ) + (N + 1) · Adv
(N+2)BDHE
G1,GT

(κ) ,

where qT is the total number of transfer queries, qI the number of issue queries, and N the number
of records in the database.

Proof: Since the AC-OT functionality prevents users from pooling their credentials, we have to
consider multiple users here, some of which are corrupted, and some of which are honest.

Game-1 : Simulator Sim1, at each transfer query by a corrupted user dictated by E , runs the
extractor for the proof of knowledge PK{(σ, k, zU, . . .)} to extract from A the witness (σ′, k,
{cred ′

c′}, {c
′}). If the extractor fails, then Sim1 outputs ⊥ to E ; otherwise, it continues to

run A interacting with the honest database algorithm. The difference between the two games
is given by t times the knowledge error of the proof of knowledge, i.e.,

HybridE,Sim0
(κ) − HybridE,Sim1

(κ) ≤ 2−κ · t .

Note that the time required to execute these t extractions is t times the time of doing a single
extraction, because the transfer protocols can only run sequentially, rather than concurrently.

Game-2 - Simulator Sim2 runs exactly like Sim1, except that Sim2 outputs ⊥ to E , if at least one
of the extracted values {cred ′

c′} was not issued during any of the Issue protocols. One can
see that in this case Ac′ is a forged credential signature on c′. Note that this also includes
the case that corrupted users manage to pool their credentials. Since only a single value zU

is extracted, one of the pooled credentials must have a different zU value than when it was
issue, and hence must be a forged credential. The difference between Game-1 and Game-2
is bounded by the following claim:

Claim 5.5 We have that

HybridE,Sim1
(κ) − HybridE,Sim2

(κ) ≤ AdvqI-SDH
G1

(κ) ,

It is obvious that if the extracted credentials were not legally issued then adversary A broke
the credential signature scheme. By the security proof given in [2], this directly gives rise to
an expected polynomial-time adversary with non-negligible advantage in solving the qI-SDH
problem, where qI is the number issue queries made by the adversary.
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Game-3 - Simulator Sim3 runs exactly like Sim2, except that Sim3 outputs ⊥ to E , if the extracted
number of the record σ′ 6∈ {1, . . . , N} or the extracted set of categories {c′} does not match
ACL′

σ during any of the transfers. One can see that in this case s = K1/k is a forged modified
Boneh-Boyen signature (described in section 3.3) on record Rσ′ .

The difference between Game-2 and Game-3 is bounded by the following claim; we postpone
the proof of the claim until later.

Claim 5.6 We have that

HybridE,Sim2
(κ) − HybridE,Sim3

(κ) ≤ Adv
(N+1)SDH
G1

(κ) .

Game-4 : Simulator Sim4, at the first transfer query dictated by E , runs the simulated proof of
knowledge PK{(h) : H = e(g, h)} The value L returned in each transfer query is computed
as L ← (Fσ/Rσ)k, and the final PK in the transfer phase is replaced by a simulated proof.

Note that now the simulation of the transfer phase no longer requires knowledge of h. Howev-
er, all of the simulated proofs are proofs of true statements and the change in the computation
of L is purely conceptional. Thus by the perfect zero-knowledge property, we have that

HybridE,Sim4
(κ) = HybridE,Sim3

(κ) .

Game-5 : Simulator Sim5 replaces the values F1, . . . , FN sent to A during DBSetup phase with
random elements from GT. Now at this point, the second proof in the previous game is a
simulated proof of a false statement. Intuitively, if these changes enable an environment E
to separate the experiments, then one can solve an instance of the BDHE problem. This is
captured in the following claim, that we will prove later:

Claim 5.7 We have that

HybridE,Sim4
(κ) − HybridE,Sim5

(κ) ≤ (N + 1) · Adv
(N+2)BDHE
G1,GT

(κ) .

We now construct, based on the real-world adversary A, an ideal-world adversary A′ that plays
the role of the cheating user and performs all of the changes to the experiments described in the
previous games except that at the time of the transfer, after having extracted the value of σ from
A, it queries credentials from the trusted third party T for all categories in ACLσ. Next, A′ queries
T to obtain record Rσ. Then he uses this record to compute L ← (Fσ/Rσ)k, and the final PK in
the transfer phase is replaced by a simulated proof.

One can see that A′ provides A with exactly the same environment as Sim5 did, so we have

IdealE,A′(κ) = HybridE,Sim5
(κ) .

The running time of A′ is that of A plus that of O(N2) exponentiations, l extractions and l proof
simulations, so is polynomial in the security parameter.

Summing up all the above equations yields the lemma statement. We have left to prove the claims
used above.
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Proof of of Claim 5.6: We prove the claim by constructing an adversary B that breaks the
unforgeability under weak chosen-message attack of the modified Boneh-Boyen signature scheme.
By the security proof given in Appendix ??, this directly gives rise to an expected polynomial-time
adversary with non-negligible advantage in solving the (N + 1)-SDH problem.

Given an adversary A for that distinguishes between Game-1 and Game-2, consider the forg-
er B that outputs message tuples (1, c1,1, . . . , c1,l), . . . , (N, cN,1, . . . , cN,ℓ). When given public key
(yDB, y1, . . . , yM ) and signatures E1, . . . , EN it creates an encrypted database using these values

E1, . . . , EN and a self-chosen value h
$
← G. At the i-th transfer it extracts from A values (σ, k, {ci})

such that

e(K, yDB)e(K, g)σ
ℓ

∏

j=1

e(K, yj)
ci,j = e(g, g)k

(This extraction is guaranteed to succeed since we already eliminated failed extractions in the
transition from Game-0 to Game-1.) When σ 6∈ {1, . . . , N} or cσ,j 6∈ ACLσ for some j then B

outputs s ← K1/k as its forgery on message tuple (σ, cσ,1, . . . , cσ,ℓ).

Proof of of Claim 5.7: Given algorithms E , A with non-negligible advantage in distinguishing
Game-4 and Game-5, consider the following algorithm B solving the (N + 1)-PDDH problem.
The claim follows by the reduction from the PDDH to the BDHE problem in Theorem 3.4.

On input g, gx, . . . , gxN+1

, H0, H1, . . . , HN+1, B runs E and A as Sim4 does until E instructs to cre-

ate database DB = ((R1,ACL1), . . . , (RN ,ACLN )). At this point B chooses x1, . . . , xℓ
$
← Zp

and computes di = i + x1ci,1 + . . . + xℓci,ℓ for i = 1, . . . , N . Let f(X) =
∏N

i=1(X + di) =
∑N

i=0 αiX
i and let fi(X) = f(X)/(X + di) =

∑N−1
j=0 βi,jX

j for i = 1, . . . , N . B computes

g′ ← gf(x) =
∏N

i=0 (gxi
)
αi

, yDB ← gxf(x) =
∏N

i=0 (gxi+1

)
αi

, and yi ← g′xi for i = 1, . . . , ℓ. For

i = 1, . . . , N , it computes Ei ← g′
1

x+di =
∏N−1

j=0 (gxj
)βi,j and Fi ←

∏N−1
j=0 (Hj)

βi,j . Algorithm B

feeds
(

pkDB = (g′, H0, yDB, y1, . . . , yℓ), (E1, F1), . . . , (EN , FN )
)

as the encrypted database to A, and
continues running E and A as under Sim4. If E outputs a bit b, then B outputs the same bit b.

It is clear that if Hi = Hxi

0 then the database is distributed exactly as in Game-4, while if
H1, . . . , HN are random it is distributed exactly as in Game-5. The advantage of B in breaking the
(N +1)-PDDH assumption is the same as E ’s advantage in distinguishing Game-4 from Game-5.

Lemma 5.8 For all environments E and all real-world adversaries A controlling the issuer and one
or more users, there exists an ideal-world adversary A′ such that

RealE,A(κ) − IdealE,A′(κ) ≤ 2−κ · q +

+ Adv
(N+1)SDH
G1

(κ) + (N + 1) · Adv
(N+2)BDHE
G1,GT

(κ) ,

where q is the total number of transfer protocols, and N the number of records in the database.
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Proof: Since the issuer is controlled by the adversary, the corrupted users can obtain all the
credentials they want, so without loss of generality we can restrict the setting to a single corrupted
user.

Game-0 : Simulator Sim0 runs the adversary A and the honest database DB exactly as in the real
world, based on the input queries dictated by E so that

HybridE,Sim0
(κ) = RealE,A(κ) .

Game-1 : Simulator Sim1, at each transfer query dictated by E , runs the extractor for the proof
of knowledge PK{(σ, k, zU, . . .)} to extract from A the witness (σ, k, {cred c}, {c}). If the
extractor fails, then Sim1 outputs ⊥ to E ; otherwise, it continues to run A interacting with
the honest database algorithm. The difference between the two games is given by q times the
knowledge error of the proof of knowledge, i.e.,

HybridE,Sim0
(κ) − HybridE,Sim1

(κ) ≤ 2−κ · q .

Note that the time required to execute these q extractions is q times the time of doing a single
extraction, because the transfer protocols can only run sequentially, rather than concurrently.

Game-2 - Simulator Sim2 runs exactly like Sim1, except that Sim2 outputs ⊥ to E , if the extracted
value σ 6∈ {1, . . . , N} or the extracted set of categories {c} does not match ACLσ during any
of the transfers. One can see that in this case s = K1/k is a forged modified Boneh-Boyen
signature (described in section 3.3) on the record Rσ′ . The difference between Game-1 and
Game-2 is bounded by the following claim. The proof is identical to that of Claim 5.6 and
hence omitted.

Claim 5.9 We have that

HybridE,Sim2
(κ) − HybridE,Sim1

(κ) ≤ Adv
(N+1)SDH
G1

(κ) .

Game-3 : Simulator Sim3, at the first transfer query dictated by E , runs the simulated proof of
knowledge PK{(h) : H = e(g, h)}. The value L returned in each transfer query is computed
as L ← (Fσ/Rσ)k, and the final PK in the transfer phase is replaced by a simulated proof.

Note that now the simulation of the transfer phase no longer requires knowledge of h. How-
ever, all of the simulated proofs are the proofs of true statements and the change in the
computation of L is purely conceptional. Thus by the perfect zero-knowledge property, we
have

HybridE,Sim3
(κ) = HybridE,Sim2

(κ) .

Game-4 : Simulator Sim4 replaces the values F1, . . . , FN sent to A during DBSetup phase with
random elements from GT. Now at this point, the second proof in the previous game is a
simulated proof of a false statement. Intuitively, if these changes enable an environment E
to separate the experiments, then one can solve the BDHE problem. This is captured in the
following claim. The proof is identical to that of Claim 5.7 and therefore omitted.
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Claim 5.10 It holds that

HybridE,Sim4
(κ) = HybridE,Sim3

(κ) ≤ (N + 1) · Adv
(N+2)BDHE
G1,GT

(κ) .

We now construct, based on the real-world adversary A, an ideal-world adversary A′ that plays the
simultaneous roles of the issuer and the user and performs all of the changes to the experiments
described in the previous games except that at the time of the transfer, after having extracted
the value of σ′ from A, he queries T for the credentials for the all categories from ACL′

σ. As the
adversary simultaneously plays the role of the issuer it sends bit 1 to T for granting all the necessary
credentials. After that A′ queries T the index σ′ to obtain the record Rσ′ . Then he uses this record
to compute L ← (Fσ′/Rσ′)k, and the final PK in the transfer phase is replaced by a simulated
proof.

One can see that A′ provides A with exactly the same environment as Sim4 did, so we have

IdealE,A′(κ) = HybridE,Sim4
(κ) .

Summing up all the above equations yields the lemma statement.
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