
Practical Yet Universally Composable Two-Server

Password-Authenticated Secret Sharing∗

Jan Camenisch
IBM Research – Zurich

jca@zurich.ibm.com

Anna Lysyanskaya
Brown University

anna@cs.brown.edu

Gregory Neven
IBM Research – Zurich

nev@zurich.ibm.com

Abstract

Password-authenticated secret sharing (PASS) schemes, first introduced by Bagherzandi et al. at CCS 2011,
allow users to distribute data among several servers so that the data can be recovered using a single human-
memorizable password, but no single server (or collusion of servers up to a certain size) can mount an
off-line dictionary attack on the password or learn anything about the data. We propose a new, universally
composable (UC) security definition for the two-server case (2PASS) in the public-key setting that addresses
a number of relevant limitations of the previous, non-UC definition. For example, our definition makes
no prior assumptions on the distribution of passwords, preserves security when honest users mistype their
passwords, and guarantees secure composition with other protocols in spite of the unavoidable non-negligible
success rate of online dictionary attacks. We further present a concrete 2PASS protocol and prove that it
meets our definition. Given the strong security guarantees, our protocol is surprisingly efficient: in its most
efficient instantiation under the DDH assumption in the random-oracle model, it requires fewer than twenty
elliptic-curve exponentiations on the user’s device. We achieve our results by careful protocol design and by
exclusively focusing on the two-server public-key setting.

1 Introduction

Personal computing has long moved beyond the “one computer on every desk and in every home” to a world
where most users own a plethora of devices, each of which is capable of general computation but is better suited
for a specific task or environment. However, keeping personal data synchronized across laptops, mobile phones,
tablets, portable media players, and other devices is not straightforward. Since most of these have some way
of connecting to the Internet, the most obvious solution is to synchronize data “over the cloud”. Indeed, many
services doing exactly this are commercially available today.

Data synchronization over the cloud poses severe security and privacy threats, however, as the users’ whole
digital lives are at risk when the cloud host turns out to be malicious or is compromised by an attack. A first
solution could be to encrypt the data under a key that is stored on the user’s devices but is unknown to the
cloud host. This approach has security as well as usability problems: If one of the devices gets lost or stolen, the
owner’s data is again at risk. Moreover, securely (and most often, manually) entering strong cryptographic keys
on devices is tedious and error-prone.

A much better approach is to protect the data under a secret that is associated with the human user such as
a human-memorizable password or biometric data. Passwords are still the most prevalent and easily deployable
alternative. Although passwords are inherently vulnerable to dictionary attacks, an important distinction must
be made between online and offline dictionary attacks. The former type of attacks, where an attacker simply
repeatedly tries to login to an online server, are easily prevented by blocking the account, presenting CAPTCHAs,
or enforcing time delays after a number of failed login attempts. Offline attacks, however, allow the adversary
to test passwords independently and are therefore more dangerous. With sixteen-character passwords having an
estimated 30 bits of entropy [BDN+11] and modern GPUs able to test billions of passwords per second, security
should be considered lost as soon as an offline attack can be performed. Therefore, to offer any relevant security,
protocols need to be designed such that the correctness of a password can only be tested by interacting with an
online server that can refuse cooperation after too many failed attempts.

∗An extended abstract of this paper appeared in Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012,
pages 525–536, ACM Press, October 2012. This is the full version.
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One possibility to safely store password-protected data in the cloud is to use a password-authenticated key
exchange (PAKE) protocol to establish a secure and authenticated channel with the server and to send and
retrieve the data over this channel. There is a considerable amount of literature on single-server PAKE protocols
that protect against offline dictionary attacks [BM92, GLNS93, HK99, BPR00, KOY09, CHK+05].

It is easy to see, however, that no single-server scheme can protect against offline dictionary attacks by a
malicious or compromised server. A better approach is to secret-share [Sha79] the data as well as the information
needed to verify the password across multiple servers, and to design the authentication protocol so that no single
server (or collusion of servers up to a certain size) learns anything that allows it to perform an offline dictionary
attack. This is what a password-authenticated secret sharing (PASS) scheme does.

One way to obtain a PASS scheme is by combining a multi-server PAKE protocol with a secret-sharing scheme
so that the user first establishes secure channels with each of the servers using her (single) password, and then
submits and retrieves the shares over these channels. Ford and Kaliski [FK00] were the first to propose a multi-
server PAKE protocol in a setting where the user remembers her password as well as the public keys of n servers,
of which n−1 can be compromised. Jablon [Jab01] proposed a similar protocol in the password-only setting, i.e.,
where the user cannot remember public keys. Brainard et al. [BJKS03] proposed a dedicated two-server protocol
in the public-key setting. None of these protocols had formal security notions or proofs, however.

The first provably secure multi-server PAKE protocol, by MacKenzie et al. [MSJ02], is a t-out-of-n protocol
supporting t < n malicious servers in the public-key setting. Szydlo and Kaliski [SK05] provided security proofs
for slight variants of the two-server protocol by Brainard et al. [BJKS03] mentioned earlier. Di Raimondo and
Gennaro [DG03] proposed the first provably secure solution in the password-only model, which was at the same
time the first solution not relying on random oracles [BR93] in the security proof. Their protocol tolerates the
compromise of t < n/3 out of n servers, which means that it cannot be used for two servers—probably the most
relevant setting in practice. This gap was filled by Katz et al. [KMTG05], who presented a dedicated two-server
PAKE protocol for the password-only setting, also without random oracles.

All the solutions mentioned so far are multi-server PAKE protocols. However, PASS is a simpler primitive
than PAKE and so one can hope to obtain more efficient and easier to analyze PASS protocols from scratch,
rather than from PAKE protocols. Indeed, Bagherzandi et al. [BJSL11] recently introduced the first direct PASS
scheme, supporting coalitions of any t < n out of n servers.

Properly defining security of password-based protocols is a delicate task. The fact that an adversary can always
guess a low-entropy password in an online attack means that there is an inherent non-negligible probability of
adversarial success; security must therefore be defined as the adversary’s inability to do significantly better than
that. The highly distributed setting of multi-user and multi-server protocols further complicates the models and
proofs. Secure composition is another issue. All provably secure multi-server protocols mentioned above employ
property-based security notions that cover the protocol when executed in isolation, but fail to provide guarantees
when the protocol is composed with other protocols and network activity. Composing password-based protocols
is particularly delicate because the composition of several protocol may amplify the non-negligible adversarial
success. Also, human users are much more likely to leak information about their passwords in their online
activities than they are to leak information about about their cryptographic keys.

Our Contributions We propose the first two-server password-authenticated secret sharing (2PASS) scheme
in the public-key setting that is provably secure in the universal composability (UC) framework [Can01]. We
show that, when considering static corruptions and the fact that an adversarial environment necessarily learns
whether a protocol succeeded or failed, our notion implies the only existing 2PASS security definition [BJSL11],
but that the converse is not true. The UC framework not only guarantees secure composition in arbitrary network
environments, but also, as argued before by Canetti et al. [CHK+05] for the case of single-server PAKE, better
addresses many other concerns about property-based definitions for password-based protocols. For example,
all property-based definitions assume that passwords are generated outside of the adversary’s view according
to pre-determined, known, and independent distributions. This does not reflect reality at all: users use the
same or related passwords across different services, they share passwords with other users, and constantly leak
information about their passwords by using them for other purposes. Rather, our UC security notion follows that
of Canetti et al. [CHK+05] in letting the environment dictate the parties’ passwords and password guesses. As a
result, this approach avoids any assumptions on the distribution of passwords, and at the same time incorporates
the non-negligible success of online guessing attacks straight into the model, so that secure protocol composition
is guaranteed through the universal composition theorem. As another example, our UC definition allows the
adversary to observe authentication sessions by honest users who attempt passwords that are related but not
equal to their correct passwords. This is a very common situation that arises every time a user mistypes her
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password; previous definitions fail to model and, consequently, provide security guarantees in this case.
Our model is also the first to explicitly capture throttling mechanisms, i.e., mechanisms to block accounts

after a number of failed authentication attempts, or because a particular server is under attack and deems it
prudent to temporarily block an account. As we’ve seen earlier, throttling is crucial to drive a wedge between
the efficiency of online and offline attacks. Throttling is impossible for the PASS scheme of Bagherzandi et
al. [BJSL11] since the servers do not learn whether the password was correct. The model and protocol for
UC-secure single-server PAKE of Canetti et al. [CHK+05] does not explicitly notify servers about the success
or failure of an authentication attempt, although it is mentioned that such functionality can be added with a
two-round key-confirmation step. In our model, honest servers can decide at each invocation whether to go
through with the protocol based on a prompt from the environment.

In summary, we believe that for password-based protocols, UC security not only gives stronger security
guarantees under composition, but is actually a more natural, more practically relevant, and less error-prone
approach than property-based definitions. In view of these strong security guarantees, our protocol is surprisingly
efficient, as we discuss in Section 4. When instantiated based on the decisional Diffie-Hellman assumption in the
random-oracle model, it requires the user to perform eighteen modular exponentiations to set up her account
and nineteen to retrieve her stored secret.

We believe that this is an exciting research area, with challenging open problems that include strengthening
our protocol to withstand adaptive corruptions, designing a UC-secure 2PASS scheme in the password-only (i.e.,
non-public-key) model, and building UC-secure protocols for the t-out-of-n case.

Versions of this paper. An extended abstract of this paper previously appeared at ACM CCS 2012. This
full version contains a detailed security proof with full descriptions of the challengers (game hops) and the
simulator. The protocol presented here differs slightly from the one presented in the extended abstract. Namely,
the signatures τi and τ ′i in Steps S3–5 and Steps R5–7 now also sign the ciphertexts Fi and F ′i , respectively.
While we stress that the original protocol is secure, this minor change in the protocol simplifies the security proof
for the case of hijacked queries.

2 Definitions

Although intuitively the security properties we want to capture seem clear, giving a rigorous definition for the
problem is a challenging task. Numerous subtleties have to be addressed. For example, where does the password
come from? Having the user pick her password at random from a dictionary of a particular size does not
accurately model the way users pick their passwords. Can any security still be retained if a user is tricked into
trying to retrieve another user’s key with her correct password? Do two users get any security if their passwords
are correlated in some way that is potentially known to an attacker? Do the servers learn anything when a user
mistypes a password?

We define the problem by giving an ideal functionality in the universal-composability (UC) framework [Can01,
PW00] that captures all the intuitive security properties required in this scenario. The ideal functionality stores a
user’s password p and a key K . (Without loss of generality, we assume that the only data that users store on and
retrieve from the servers are symmetric encryption keys. With those, users can always encrypt data of arbitrary
length and store the resulting ciphertext on an untrusted device or in the cloud.) The ideal functionality only
reveals the user’s key K when presented with the correct password. It notifies the two servers of all attempts
(successful and unsuccessful) to retrieve the key, and allows the servers to interrupt the retrieval whenever they
deem necessary. As long as one of the servers is not corrupt, the adversary does not learn anything about the
user’s password or key, unless it can guess her password.

Following the UC framework, we then require that a protocol must not reveal any more information to an
adversary than the ideal functionality does, no matter what values users use for their passwords and keys. This
is a very strong definition of security: in particular, a protocol satisfying it is guaranteed to remain secure even
when run concurrently with any other protocols.

2.1 Ideal Functionality

Preliminaries. A 2PASS scheme operates in a setting with multiple users Ui, i = 1, . . . , U , multiple servers
Sj , j = 1, . . . , S, an adversary A and the environment E . Users in our protocol are stateless, but each server Sj
maintains an associative array stj [·] containing its local user directory. The scheme is defined by two interactive
protocols Setup and Retrieve. A user Ui performs the Setup protocol with two servers of its choice Sj and Sk to
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store her secret K under username u and password p. Any user Ui′ , possibly different from Ui, can recover the
secret K by running the Retrieve protocol with Sj and Sk using the correct username u and password p.

We assume static Byzantine corruptions, meaning that at the beginning of the game the adversary decides
which parties, users and servers alike, are corrupted. From then on, the adversary controls all corrupted parties
and cannot corrupt any other parties. The ideal functionality “knows” which participants are honest and which
ones are corrupt. Without loss of generality, we assume that there is at least one corrupt user through which
the adversary can make setup and retrieve queries. Note that since there is no user authentication other than by
passwords, in the real world the adversary can always generate such queries by inserting fake messages into the
network.

While our protocol clearly envisages a setting where multiple users can create multiple accounts with any
combination of servers of their choice, the UC framework allows us to focus on a single session only, i.e., for a
single user account. Security for multiple sessions follows from the UC composition theorem [Can01], or if the
different sessions share the same common reference string and PKI (as one would prefer in practice), from the
joint-state universal composition (JUC) theorem [CR03].

For the protocol specification and security proof, we can therefore focus on a single user account u that is
established with two servers S1 and S2. The detailed ideal functionality F2PASS is given in Figure 1. The triple
sid = (u,S1,S2) is used as the session identifer, but multiple simultaneous setup and retrieve queries by different
users may take place within this session. Each setup and retrieve query within this session has a unique query
identifier qid . (See below for further discussion on session and query identifiers.) For compactness of notation,
we will from now on refer to the functionality F2PASS as F .

We recall that in the UC framework, parties are modeled as interactive Turing machines with two ways of com-
municating with other machines: reliable, authentic communication via the input and subroutine output tapes,
and unreliable communication via the incoming and outgoing communication tapes. The former models local
communication between processes and their subroutines; we say that one machine passes/obtains input/output
to/from another machine. The latter models network communication; we say that one machine sends/receives
a message to/from another machine. The environment passes input to and obtains output from the adversary
and regular protocol machines, while protocol machines can pass input to and receive output from their local
subroutines. Protocol machines can only send messages to and receive messages from the adversary, who controls
all network traffic. The adversary can deliver these messages arbitrarily, meaning that it can modify, delay, or
drop messages at will. An ideal functionality is a special protocol machine that is local to all parties except the
adversary. Meaning, it interacts with all regular protocol machines through its input/output tapes and with the
adversary through its communication tapes.

The ideal functionality maintains state by creating “records” and by “marking” these records. The state is
local to a single instance of F , i.e., for a single session identifier sid = (u,S1,S2) defining a single user account.
The multi-session functionality keeps separate state for each user account. The functionality also keeps a two-
dimensional associative array mark [·, ·]. When we say that query qid is marked X for party P, we mean that the
entry mark [qid ,P] is assigned the value X.

Clarification. Through the Setup Request interface, a user U can initiate the creation of an account with
username u and servers S1 and S2 to store a secret K protected with password p. If at least one server is honest,
p and K remain hidden from the adversary; if both servers are corrupt, F sends p and K to the adversary. Since
the environment instructs users to create accounts and since the adversary controls the network, multiple setup
queries may be going on concurrently. The different queries are distinguished by means of a query identifier qid
that U , S1, and S2 agree on upfront. (See further discussion below.)

Since agreeing on a query identifier does not mean that a secure channel has been established, the adversary
can always “hijack” the query by intercepting the user’s network traffic and substituting it with its own. This
is modeled by the Setup Hijack interface, using which the adversary can replace the password p and key K for
a query qid with its own. The user will always output fail after a query was hijacked, but the servers do not
notice the difference with a regular setup.

The adversary controls when a server or user learns whether the setup succeeded or failed through the Setup
Result Server and Setup Result User interfaces. Once the adversary lets a setup succeed for an honest server,
this server will refuse all further setups. The adversary can always make setup transactions fail for a subset of
the participants, but the user will only output that setup succeeded if all honest servers also concluded the setup
successfully and if the query was not hijacked.

A user U ′ (possibly different from U) can recover the secret key K by calling the Retrieve Request interface
with a password attempt p′. If at least one server is honest, then no party learns p′; if both are corrupt, then
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Functionality F2PASS

Setup Request: Upon input (Stp, sid , qid , p,K ) from U , check that sid = (u,S1,S2) for some u ∈ {0, 1}∗ and
for some server identities S1,S2, and check that query identifier qid is unique. Create a record (AStp, qid ,U , p,K ).
If S1 and S2 are corrupt then send (Stp, sid , qid ,U , p,K ) to the adversary. Otherwise, send (Stp, sid , qid ,U) to
the adversary.

Setup Hijack: Upon input (SHjk, sid , qid , p̂, K̂ ) from the adversary A for sid = (u,S1,S2), check that a record
(AStp, qid ,U , p,K ) exists and that query qid has not been marked for any of {S1,S2,A}. Mark query qid as hjkd
for A and replace record (AStp, qid ,U , p,K ) with (AStp, qid ,U , p̂, K̂ ).

Setup Result Server: When receiving (SRlt, sid , qid ,S, s) from the adversary for sid = (u,S1,S2), for an
honest server S ∈ {S1,S2}, and for s ∈ {succ, fail}, check that a record (AStp, qid , ·, ·, ·) exists. If query qid is
already marked succ or fail for S, or if some other setup query is already marked succ for S, then do nothing.
Else, mark query qid as s for S and output (SRlt, sid , qid , s) to S. If now query qid is marked succ for all honest
servers among S1 and S2, then record (Stp, p,K ).

Setup Result User: When receiving (SRlt, sid , qid ,U , s) from the adversary for sid = (u,S1,S2), for an honest
user U , and for s ∈ {succ, fail}, check that a record (AStp, qid ,U , ·, ·) exists that is not yet marked for U . If it
is marked succ for all honest servers and not marked for A, then mark it s for U and output (SRlt, sid , qid , s) to
U ; else, mark it fail for U and output (SRlt, sid , qid , fail) to U .

Retrieve Request: Upon input (Rtr, sid , qid ′, p′) from U ′, check that sid = (u,S1,S2) and that query identifier
qid ′ is unique. Create a record (ARtr, qid ′,U ′, p′). If S1 and S2 are both corrupt then send (Rtr, sid , qid ′,U ′, p′)
to the adversary, else send (Rtr, sid , qid ′,U ′) to the adversary.

Retrieve Hijack: When receiving (RHjk, sid , qid ′, p̂′) from the adversary for sid = (u,S1,S2), check that a
record (ARtr, qid ′,U ′, p′) exists and that query qid ′ has not been marked for any of {S1,S2,A}. Mark query qid ′

as hjkd for A and replace record (ARtr, qid ′,U ′, p′) with (ARtr, qid ′,U ′, p̂′).
Retrieve Notification: When receiving (RNtf, sid , qid ′,Si) from the adversary for sid = (u,S1,S2) and for
an honest server Si ∈ {S1,S2}, check that a record (ARtr, qid ′, ·, ·) exists. If there exists a setup query that
is marked succ for Si then output (RNtf, sid , qid ′) to Si. Else, create a record (Perm, qid ′,Si, deny), output
(RRlt, sid , qid ′, fail) to Si, and mark qid ′ as fail for Si.
Retrieve Permission: Upon input (Perm, sid , qid ′, a) from Si ∈ {S1,S2}, where sid = (u,S1,S2) and a ∈
{allow, deny}, check that a record (ARtr, qid ′,U ′, p′) exists and that no record (Perm, qid ′,Si, ·) exists. Create a
record (Perm, qid ′,Si, a) and send (Perm, sid , qid ′,Si, a) to the adversary.

If now a record (Perm, qid ′,Si, allow) exists for all honest Si ∈ {S1,S2}, then send (Rtr, sid , qid ′, c,K ′′) to the
adversary, where (c,K ′′)← (correct,K ) if a record (Stp, p,K ) exists, p′ = p, and either U ′ is corrupt or qid ′ is
marked hjkd for A; where (c,K ′′) ← (correct,⊥) if a record (Stp, p, ·) exists, p′ = p, U ′ is honest, and qid ′ is
not marked for A; and where (c,K ′′)← (wrong,⊥) otherwise.

Retrieve Result Server: Upon receiving (RRlt, sid , qid ′,Si, a) from the adversary for sid = (u,S1,S2), for an
honest server Si ∈ {S1,S2}, and for a ∈ {allow, deny}, check that records (ARtr, qid ′, ·, p′) and (Perm, qid ′,Si, ai)
exist, and that query qid ′ is not yet marked for Si.
Output (RRlt, sid , qid ′, s) to Si and mark query qid ′ as s for Si, where s← succ if a = allow, a record (Stp, p, ·)
exists, records (Perm, qid ′,Sj , allow) exist for all honest servers Sj ∈ {S1,S2}, and p′ = p. Otherwise, s← fail.

Retrieve Result User: Upon receiving (RRlt, sid , qid ′,U ′, a,K ′) from the adversary for honest user U ′, where
sid = (u,S1,S2), a ∈ {allow, deny}, and Si ∈ {S1,S2}, check that record (ARtr, qid ′,U ′, p′) exists and that query
qid ′ is not yet marked for U ′. Output (RRlt, sid , qid ′,K ′′) to U ′ where

• K ′′ ← ⊥ if a = deny; else,

• K ′′ ← K ′ if S1 and S2 are corrupt and a = allow; else,

• K ′′ ← K if qid ′ is marked succ for S1 and S2 and is not marked for A; else,

• K ′′ ← ⊥.

If K ′′ = ⊥ then mark query qid ′ as fail for U ′, else mark it as succ for U ′.

Figure 1: Ideal functionality for retrieve of 2PASS protocols.
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Functionality FCA

Registration: Upon receiving the first message (Register, sid , v) from party P, send (Registered, sid , v) to the
adversary; upon receiving ok from the adversary, and if sid = P and this is the first request from P, then record
the pair (P, v).

Retrieve: Upon receiving a message (Retrieve, sid) from party P ′, send (Retrieve, sid ,P ′) to the adversary,
and wait for an ok from the adversary. Then, if there is a recorded pair (sid , v) output (Retrieve, sid , v) to P ′.
Otherwise output (Retrieve, sid ,⊥) to P ′.

Figure 2: Ideal certification functionality.

p′ is sent to the adversary. Similarly to setup queries, the adversary can hijack the retrieve query through the
Retrieve Hijack interface and replace p′ with its own p̂′.

When the adversary notifies a server of a retrieve request via the Retrieve Notification interface, the server
outputs a (RNtf, . . .) message. At this point, the server can apply any external throttling mechanism to decide
whether to participate in this retrieval, e.g., by refusing to do so after too many failed attempts. The servers
indicate whether they proceed with the retrieval through the Retrieve Permission interface. Only after all honest
servers have allowed the transaction to proceed does the adversary learn whether the password was correct and,
if the password is correct and either the user U ′ is corrupt or the query was hijacked, also the key K .

The adversary decides at which point the results of the retrieval are delivered to the parties by invoking
the Retrieve Result Server and Retrieve Result User interfaces. The adversary can always make a party fail by
setting a = deny, even if p′ = p, but cannot make the retrieval appear successful if p′ 6= p. This reflects the fact
that in the real world, the adversary can always tamper with communication to make a party fail, but cannot
force an honest party to succeed, unless he knows the password.

If both servers are corrupt, then the adversary can force the user to succeed with any key K ′ of the adversary’s
choice. If at least one server is honest, however, then F either sends the real recorded key K to U ′, or sends it a
fail message. The adversary doesn’t learn anything about p′ or K , and the user can only obtain K if all honest
servers participated in the retrieval and the password was correct.

2.2 Discussion

On session and query identifiers. The UC framework imposes that the session identifier sid be globally unique.
The security proof considers a single instance of the protocol in isolation, meaning that in the security proof, all
calls to the ideal functionality have the same sid . For 2PASS protocols, the sid must be (1) the same for setup
and retrieval, so that the ideal functionality can keep state between these phases, and (2) human-memorizable,
so that a human user can recover her secret key K based solely on information she can remember. We therefore
model sid to consist of a user name u and the two server identities S1,S2. Together, these uniquely define a “user
account”. To ensure that sid is unique, servers reject setups for combinations of a username and two servers for
which they already have stored state.

Within a single user account (i.e., a single sid), multiple setup and retrieve protocol executions may be
going on concurrently. To distinguish the different protocol executions, we let the environment specify a unique
(within this sid) query identifier qid when the execution is first initialized by the user. The qid need not be
human-memorizable, so it can be agreed upon like any session identifier in the UC framework, e.g., by running
an initialization protocol that implements Finit as defined by Barak et al. [BLR04].

As mentioned above, security for multiple user accounts is obtained through the JUC theorem [CR03]. In
the multi-session functionality F̂2PASS, the tuple (u,S1,S2) becomes the sub-session identifier ssid , whereas the
session identifier sid is a unique string that specifies the “universe” in which the multi-session protocol operates,
describing for example which CRS to use and which PKI to trust. In practice, the sid of the multi-session
functionality can be thought of as hardcoded in the software that users use to set up and retrieve their accounts,
so that human users need not remember it.

Strengthening the definition. If both servers are corrupt, our ideal functionality hands the password p, the key
K , and all password attempts p′ to the adversary. Giving away the passwords and key “for free” is a somewhat
conservative model for the fact that two corrupt servers can always perform an offline dictionary attack on p—a
model that, given the low entropy in human-memorizable passwords and the efficiency of brute-force attacks,
is unfortunately quite close to reality. At the same time, it allows for efficient instantiations such as ours that
let passwords do what they do best, namely protect against online attacks. One could further strengthen the
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definition in the spirit of Canetti et al. [CHK+05] by merely giving the adversary access to an offline password
testing interface that returns K only when called with the correct password p. Protocols satisfying this stronger
notion will have to use a very different and most likely less efficient approach than ours, but would have the
benefit of offering some protection when both servers are corrupt but a very strong password is used, and of
hiding the password attempt p′ when talking to the wrong servers.

Relation to existing notions. The only existing security notion for 2PASS is due to Bagherzandi et al. [BJSL11].
In the static corruption case, if we bear in mind that an adversarial environment will necessarily learn whether
the retrieval succeeded or failed, our ideal functionality meets their security definition, so our notion implies
it. The notion of Bagherzandi et al. does not imply ours, however, because it fails to capture related-password
attacks.

To see why this is true, consider the following (contrived) scheme that satisfies Bagerzandi et al.’s definition
but is insecure against a related-password attack. Take a scheme that is secure under the existing notion [BJSL11].
Consider a modified scheme where, if the user’s input password starts with 1, the user sends the password in
the clear to both servers; else, follow the normal protocol. This scheme still satisfies their definition for the
dictionary of passwords starting with 0: their definition does not consider the case when the honest user inputs
an incorrect password. It does not satisfy our definition, however: suppose the environment directs a user whose
correct password is 0‖p to perform a retrieve with password 1‖p. In the real protocol, a dishonest server involved
in the protocol will see the string 1‖p. In the ideal world, the ideal functionality hides an incorrect password
from the servers, and so no simulator will be able to correctly simulate this scenario.

2.3 Setup Assumptions

Our protocol requires two setup assumptions. The first is the availability of a public common reference string
(CRS), modeled by an ideal functionality FDCRS parameterized with a distribution D. Upon receiving input
(CRS, sid) from P, if no value r is recorded, it chooses and records r ←R D. It then sends (CRS, sid , r) to P.

The second is the existence of some form of public-key infrastructure where servers can register their public
keys and the user can look up these public keys. The user can thus authenticate the servers so that she can be
sure that she runs the retrieve protocol with the same servers that she previously ran the setup protocol with.
In other words, we assume the availability of the functionality FCA by Canetti [Can04] depicted in Figure 2. We
will design our protocol in a hybrid world where parties can make calls to FCA.

3 Our Protocol

Let GGen be a probabilistic polynomial-time algorithm that on input security parameter 1k outputs the description
of a cyclic group G, its prime order q, and a generator g.

Let (keyg, enc, dec) be a semantically secure public-key encryption scheme with message space G; we write c =
encpk (m; r) to denote that c is an encryption ofm with public key pk using randomness r. Our protocol will require
this cryptosystem to (1) have committing ciphertexts, so that it can serve as a commitment scheme; (2) have
appropriate homomorphic properties (that will become clear in the sequel); (3) have an efficient simulation-sound
zero-knowledge proof of knowledge system for proving certain relations among ciphertexts (which properties are
needed will be clear in the sequel) and for proving correctness of decryption. The ElGamal cryptosystem [ElG85]
satisfies all the properties we need.

Let (keygsig, sig, ver) be a signature scheme with message space {0, 1}∗ secure against adaptive message attacks
and let (keyg2, enc2, dec2) be a CCA2 secure public key encryption scheme with message space {0, 1}∗ that
supports labels. To denote an encryption of m with public key pk and label l ∈ {0, 1}∗, we write c = enc2pk (m, l).
When employing these schemes, we assume suitable (implicit) mappings from (tuples of) elements from G to
{0, 1}∗.

A simulation-sound [Sah99] zero-knowledge protocol is essentially a zero-knowledge proof protocol where
the adversary cannot create a new valid proof of a false statement, even after seeing several valid proofs of false
statements produced by the simulator. More formally, let Φ(v) be a predicate over a value v and let RΦ = {(w, v)}
be the associated witness relation so that Φ(v) = 1⇔ ∃w : (w, v) ∈ RΦ. A protocol Π for predicate Φ is a tuple
of algorithms Π = (P,V,Sim) where the prover P on input v and w interacts with the verifier V on input v,
denoted P(v, w) ↔ V(v), until the latter outputs 0 or 1. The zero-knowledge simulator Sim, on input a value v
and some trapdoor information, produces a valid proof for v. We require that the protocol satisfies the following
properties:

Complete: For all (w, v) ∈ RΦ : P(v, w)↔ V(v) = 1.
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Simulation-sound: For all A running in time polynomial in k, the probability that ASim(·) ↔ V(v) = 1 for a
value v, chosen by A, such that Φ(v) = 0 and v was never queried to Sim(·), is negligible in k.

Concurrent zero-knowledge: For all A running in time polynomial in k,
∣∣Pr[AP(·,·)]− Pr[ASim′(·,·)]

∣∣ is negli-
gible in k, where Sim′(v, w) = Sim(v).

3.1 High-Level Idea

The main idea underlying our protocol is similar to the general approach of Brainard et al. [BJKS03]: in the
setup protocol, the user sends secret shares of her password and her key to each of the servers. To retrieve the
shares of her key, the user in the retrieve protocol sends new secret shares of her password to the servers. These
then run a protocol to determine whether the secrets received in the retrieve protocol and those in the setup
protocol are shares of the same password. If so, they send the secret shares of the key to the user.

This basic idea is very simple; the challenge in the design of our protocol is to implement this idea efficiently
and in a way that can be proved secure in the UC model. We first explain how this is achieved on a high level
and then describe our protocols in detail.

Setup protocol. The servers S1 and S2 receive from the user secret shares p1 and p2, respectively, of the user’s
password p = p1p2, and, similarly, secret shares K1 and K2 of the user’s symmetric key K = K1K2. To make sure
that during the retrieval a malicious server cannot substitute different values for the password and key share, S1

additionally receives from the user commitments C2 and C̃2 of the shares p2 and K2, while S2 is given the opening
information s2, s̃2 for both commitments. Similarly, S2 receives two commitments C1 and C̃1 to the shares p1

and K1, while S1 is given the corresponding opening information s1, s̃1. Later, during the retrieve protocol, the
servers will have to prove that they are behaving correctly with respect to these commitments.

To create the commitments and to be able to achieve UC security, we rely on the CRS model by encrypting
the values using randomness si, s̃i under a public key PK given by the CRS, for which nobody knows the
corresponding decryption key.

To communicate the secret shares and the opening information to the servers securely, the user will encrypt
them under the servers’ public keys (which she looks up via the FCA functionality). This is not enough, however.
To prevent a malicious server from substituting different values for the password and key share, we make use of
the labels of the CCA2-secure encryption scheme, to bind the encryptions to the specific instance of the protocol,
in particular to the commitments C1, C̃1, C2, and C̃2. To signal to the user that the setup has worked, the
servers will send her a signed statement.

Retrieve protocol. The user re-shares the password guess p′ = p′1p′2 and gives p′1 and p′2 to servers S1 and S2,
respectively. In addition, she gives S1 and S2 commitments C ′1 and C ′2 to p′1 and p′2. She hands the opening
information s′1 for C ′1 to S1 and s′2 for C ′2 to S2. The user also generates an ephemeral key pair (PK u,SK u) of
a semantically secure encryption scheme and sends the public key to the servers.

Then, S1 and S2 jointly compute the following randomized two-party function: on public input (C1, C2, C
′
1, C

′
2)

and with each server having his password shares and opening information as private inputs, output 1 if (1)
Ci = enc(pi; si) for i ∈ {1, 2}; (2) C ′i = enc(p′i; s

′
i) for i ∈ {1, 2}; (3) p1p2 = p′1p′2. Otherwise, output a random

element of the group G. If the output is 1, each server sends to the user his share of K encrypted under PK u.
Let us explain how this two-party computation is done in a way that is both efficient and secure in the

UC model. As the first idea, consider the following approach: S1 forms a ciphertext E1 of the group element
δ1 = p1/p′1, and sends E1 to S2. S2 uses the homomorphic properties of the underlying cryptosystem to obtain
E = E1 × E2, where E2 is an encryption of δ2 = p′2/p2. Now E is an encryption of 1 if and only if p′1p′2 = p1p2,
i.e., if the user’s password matches. However, there are three issues: (1) How do S1 and S2 decrypt E? (2) How
do we make sure that they don’t learn anything if the user submitted an incorrect password? (3) How do we
make sure that the servers do not deviate from this protocol?

To address (1), we have S1 generate a temporary public key pk for which it knows the secret key, and so now
the ciphertexts E1, E2 and E are formed under this temporary public key. This way, S1 will be able to decrypt
E when he receives it. To address (2), our protocol directs S2 to form E somewhat differently; specifically, by
computing E = (E1 × E2)z for a random z ∈ Zq . Now if the password the user has submitted was correct, the
decryption of E will still yield 1. However, if it was incorrect, it will be a truly random element of G. Finally, to
address (3), S1 and S2 must prove to each other, at every step, that the messages they are sending to each other
are computed correctly.

As in the Setup protocol, the user encrypts the secret shares and the opening information under the server’s
public keys (which she looks up via the FCA functionality). She uses the commitments C ′1, C

′
2 and the ephemeral

public key PK u as a label for these ciphertexts. As we will see in the proof of security, owing to the security
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properties of labelled CCA2 encryption, if the shares are correct the servers can safely use PK u to encrypt their
shares of K . To ensure that the servers encrypt and send the correct shares, they first convince each other that
their respective encryptions are consistent with the commitments of the shares received from the user in the
Setup protocols. To inform the user of the encryptions’ correctness, each server sends to the user a signature
of both encryptions and the commitments C ′1, C

′
2 received just now. Thus a malicious server will be unable to

substitute K with a key different from what was stored during setup.

3.2 Protocol Details

We assume that the common reference string functionality FCRS describes a group G of prime order q and gener-
ator g generated through GGen(1k), together with a public key PK of (keyg, enc, dec) for which the corresponding
secret key is unknown. We also assume the presence of certified public keys for all servers in the system through
FCA; we do not require users to have such public keys. More precisely, we assume each server Si to have gener-
ated key pairs (PE i,SE i) and (PS i,SS i) for (keyg2, enc2, dec2) and (keygsig, sig, ver), respectively, and to have
registered the public keys by calling FCA with (Register,Si, (PE i,PS i)).

Our retrieve protocol requires the servers to prove to each other the validity of some statements that encryp-
tions were correctly computed. In the description of the protocol we denote the proof protocol that a predicate
Φ(v) = 1 for a public value v and witness w as ZK{(w) : (w, v) ∈ RΦ}. One can attach a “label” λ to a
proof protocol by regarding the proof protocol for the conjunction predicate Φ(v) = 1 ∧ label = λ; we write
ZK{(w) : (w, v) ∈ RΦ}(λ) as a shorthand notation. Note that since the label is part of the predicate, simulation-
soundness implies that an adversary, after seeing a proof of an invalid statement for one label, cannot create a
proof for an invalid statement of a different label. We provide the concrete instantiation of these protocols and
the encryption schemes that we use in Section 4. For now we only require that the protocols are concurrent
zero-knowledge and simulation-sound proofs. We refer to Section 4 for more details on how this can be achieved.

We assume the following communication and process behavior. The servers are listening on some standard
port for protocol messages. As we do not assume secure channels, messages can arrive from anyone. All messages
that the parties send to each other are tagged by (Stp, sid , qid , i) or (Rtr, sid , qid , i) where i is a sequence number
indicating the step in the respective protocol. All other messages received on that port will be dropped. Also
dropped are messages that cannot be parsed according to the format for the protocol step corresponding to
the tag a message carries and messages which have the same tag as a message that has already been received.
The tags are used to route the message to the different protocol instances, and are only delivered to a protocol
instance in the order of the sequence number. If they arrive out of sequence, the messages are buffered until
they can be delivered in sequence. If a server receives a message from the user with a fresh tag (Stp, sid , qid) or
(Rtr, sid , qid), and sequence number 1, it starts a new instance of the respective protocol, or drops the message
if an instance qid is already running.

3.2.1 The Setup Protocol

All parties have access to the system parameters including the group G and the public key PK through FCRS .
We assume that each server Si keeps internal persistent storage st i.

The input to U is (Stp, sid , qid , p,K ), where sid = (u,S1,S2), u is the chosen username, p is the user’s
chosen password, and K the key to be stored. We assume that both p and K are encoded as elements of G.
Whenever a test fails, the user or server sends (Stp, sid , qid , fail) to the other parties and aborts with output
(SRlt, sid , qid , fail). Furthermore, whenever any party receives a message (Stp, sid , qid , fail), it aborts with
output (SRlt, sid , qid , fail). The structure of the Setup protocol is depicted in Figure 3; the individual steps
are as follows.

Step S1: On input (Stp, sid , qid , p,K ), user U performs the following computations.

(a) Obtain public keys of the servers and CRS: Query FCRS to receive PK and query FCA with (Retrieve, sid ,S1)
and (Retrieve, sid ,S2) to receive (PE 1,PS 1) and (PE 2,PS 2).

(b) Compute shares of password and key: choose p1 ←R G and K1 ←R G and compute p2 ← p/p1 and K2 ←
K/K1.

(c) Encrypt shares under the CRS and the public keys of the servers: Choose randomness s1, s2, s̃1, s̃2 ←R

Zq, encrypt shares of p and K under the CRS as C1 ← encPK (p1; s1), C̃1 ← encPK (K1; s̃1), C2 ←
encPK (p2; s2), and C̃2 ← encPK (K2; s̃2), and encrypt shares and randomness under the servers’ public keys as
F1 ← enc2PE1

((p1,K1, s1, s̃1), (sid , qid , C1, C̃1, C2, C̃2)) and F2 ← enc2PE2
((p2,K2, s2, s̃2, ), (sid , qid , C1, C̃1,

C2, C̃2)).
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U S1 S2

S1

(F2, C1, C̃1, C2, C̃2)
-

(F1, C1, C̃1, C2, C̃2)
-

S2
sigSS1

(sid , qid , C1, C̃1, C2, C̃2)
-

S3

�
sigSS2

(sid , qid , F2, C1, C̃1, C2, C̃2, succ)

�
sigSS2

(sid , qid , C1, C̃1, C2, C̃2)

S4�
sigSS1

(sid , qid , F1, C1, C̃1, C2, C̃2, succ)

S5

Figure 3: Communication messages of the Setup protocol with computation steps Si.

(d) Send encryptions to servers: Send (F1, C1, C̃1, C2, C̃2) to S1 and (F2, C1, C̃1, C2, C̃2) to S2.

Step S2: The first server S1 proceeds as follows.

(a) Receive message from user and check if fresh instance: Parse the received message as (Stp, sid , qid , 1, F1, C1,
C̃1, C2, C̃2).

(b) Obtain public keys of the second server: Query FCA with (Retrieve, sid ,S2) to receive (PE 2,PS 2).

(c) Decrypt shares and randomnes: Decrypt F1 with label (sid , qid , C1, C̃1, C2, C̃2), which will fail if the label is
wrong.

(d) Verify correct encryption of shares under CRS: Check whether C1 = encPK (p1; s1) and C̃1 = encPK (K1; s̃1).

(e) Verify that this is a new instance: Check that there is no entry st1[sid ] in the state.

(f) Inform second server that all checks were successful: Compute the signature σ1 ← sigSS1
(sid , qid , C1,

C̃1, C2, C̃2) and send it to S2.

Step S3: The second server S2 proceeds as follows.

(a) Receive message from user and first server: Parse the message received from U as (Stp, sid , qid , 1, F2, C1, C̃1,
C2, C̃2) and the message from S1 as (Stp, sid , qid , 2, σ1).

(b) Obtain public keys of S1: Send (Retrieve, sid ,S1) to FCA to obtain (PE 1,PS 1).

(c) Decrypt shares and randomness: Decrypt F2 with label (sid , qid , C1, C̃1, C2, C̃2), which will fail if the label
is wrong.

(d) Verify correct encryption of shares under CRS: Check whether C2 = encPK (p2; s2) and C̃2 = encPK (K2; s̃2).

(e) Verify that this is a new instance: Check that there is no entry st2[sid ] in the state.

(f) Verify first server’s confirmation: Check that verPS1
((sid , qid , C1, C̃1, C2, C̃2), σ1) = 1.

(g) Inform first server of acceptance: Compute signature σ2 ← sigSS2
(sid , qid , C1, C̃1, C2, C̃2) and send σ2 to S1.

(h) Inform user of acceptance: Compute signature τ2 ← sigSS2
(sid , qid , F2, C1, C̃1, C2, C̃2, succ) and send τ2 to

U and S1.

(i) Update state and exit: Update state st2[sid ] ← (PS 1, p2,K2, s2, s̃2, C1, C̃1, C2, C̃2) and output (SRlt, sid ,
qid , succ).

Step S4: The first server S1 proceeds as follows.

(a) Receive message from second server: Parse the message received from S2 as τ2.

(b) Verify second server’s confirmation: Check that verSS2
((sid , qid , C1, C̃1, C2, C̃2), σ2) = 1.

(c) Inform user of acceptance: Compute τ1 ← sigSS1
(sid , qid , F1, C1, C̃1, C2, C̃2, succ) and send τ1 to U .

(d) Update state and exit: Update state st1[sid ] ← (PS 2, p1,K1, s1, s̃1, C1, C̃1, C2, C̃2) and output (SRlt, sid ,
qid , succ).

Step S5: The user U proceeds as follows.

(a) Receive messages from both servers: Parse the messages received from S1 and S2 as τ1 and τ2, respectively.

(b) Verify that servers accepted and finalize protocol: Check that verPS1
((sid , qid , F1, C1, C̃1, C2, C̃2, succ), τ1) =

1 and that verPS2((sid , qid , F2, C1, C̃1, C2, C̃2, succ), τ2) = 1. If so, output (SRlt, sid , qid , succ).

10



U ′ S1 S2

R1

(F ′1, C
′
1, C

′
2,PKu)

-
(F ′2, C

′
1, C

′
2,PKu)

-
R2

π1, (pk , E1, sigSS1
(sid , qid ′, C′1, C

′
2,PKu, E1, pk))

- R3

�
π2, (E, sigSS2

(sid , qid ′, C′1, C
′
2,PKu, E))

R4 π3, π4, C̃
′
1 -

R5�
π5, C̃

′
2

�
(C̃′2, τ

′
2)

R6
(C̃ ′1, τ

′
1)

�
R7

Figure 4: Communication messages of the Retrieve protocol with computation steps Ri. In this picture, zero-
knowledge proofs are assumed to be non-interactive and thus denoted simply as sending the value π; however,
depending on their instantiation, they might be interactive protocols.

3.2.2 The Retrieve Protocol

The input to U ′ is (Rtr, sid , qid ′, p′). The servers S1 and S2 have their respective state information st1[sid ]
and st2[sid ] as input. The structure of the Retrieve protocol is depicted in Figure 4; the individual steps are as
follows. In all steps, whenever a party “fails” or any verification step fails, the party sends (Rtr, sid , qid ′, fail)
to the other parties and aborts with output (RRlt, sid , qid ′, fail) in case the party is a server, or with output
(RRlt, sid , qid ′,⊥) if it’s a user. Furthermore, whenever any party receives a message (Rtr, sid , qid ′, fail), it
aborts with the same outputs.

Step R1: On input (Rtr, sid , qid ′, p′), user U ′ performs the following computations.

(a) Obtain public keys of the servers and CRS: Query FCRS to receive PK and query FCA with (Retrieve, sid ,
S1) and (Retrieve, sid ,S2) to receive (PE 1,PS 1) and (PE 2,PS 2).

(b) Compute shares of password and choose encryption key pair: Choose p′1 ←R G and compute p′2 ← p′/p′1.
Generate (PK u,SK u)← keyg(1k).

(c) Encrypt shares under the CRS and the servers’ public keys: Choose s′1, s
′
2 ←R Zq and encrypt pass-

word shares under the CRS as C ′1 ← encPK (p′1; s′1), C ′2 ← encPK (p′2; s′2). Encrypt the shares and ran-
domness for both servers as F ′1 ← enc2PE1

((p′1, s
′
1), (sid , qid ′, C ′1, C

′
2,PK u)) and F ′2 ← enc2PE2

((p′2, s
′
2),

(sid , qid ′, C ′1, C
′
2,PK u)).

(d) Send encryptions to servers: Send (F ′1, C
′
1, C

′
2,PK u) to S1 and (F ′2, C

′
1, C

′
2,PK u) to S2.

Step R2: The first server S1 proceeds as follows.

(a) Receive message from user, fail if account doesn’t exist: Parse the message received from U ′ as (Rtr, sid , qid ′,
1, F ′1, C

′
1, C

′
2,PK u). If no entry st1[sid ] exists in the state information then fail, else recover st1[sid ] =

(PS 2, p1,K1, s1, s̃1, C1, C̃1, C2, C̃2).

(b) Ask environment for permission to continue: Output (RNtf, sid , qid ′) to the environment and wait for an
input (Perm, sid , qid ′, a) with a ∈ {allow, deny}. If a = deny then fail.

(c) Decrypt share and randomness: Decrypt F ′1 with label (sid , qid ′, C ′1, C
′
2,PK u), which will fail if the label is

wrong.

(d) Verify correct encryption of share under CRS: Check that C ′1 = encPK (p′1; s′1).

(e) Generate key pair for homomorphic encryption scheme and encrypt shares’ quotient: Generate (pk , sk) ←
keyg(1k), choose r1 ←R Zq, and compute E1 ← encpk (p1/p′1; r1).

(f) Send signed encrypted quotient to second server: Compute the signature σ′1 ← sigSS1
(sid , qid ′, C ′1, C

′
2,PK u,

E1, pk) and send (pk , E1, σ
′
1) to S2.

(g) Prove to second server that E1 is correct: Perform the following proof protocol with S2:

π1 := ZK{(p1, p
′
1, s1, s

′
1, r1) : E1 = encpk (p1/p′1; r1)∧ C1 = encPK (p1; s1) ∧ C ′1 = encPK (p′1; s′1)}((sid , qid ′, 1)) .

Step R3: The second server S2 proceeds as follows.
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(a) Receive message from user, fail if account doesn’t exist: Parse the message received from U ′ as (Rtr, sid , qid ′, 1,
F ′2, C

′
1, C

′
2,PK u). If no entry st2[sid ] exists in the saved state then fail, else recover st2[sid ] = (PS 1, p2,K2, s2,

s̃2, C1, C̃1, C2, C̃2).

(b) Ask environment for permission to continue: Output (RNtf, sid , qid ′) to the environment and wait for an
input (Perm, sid , qid ′, a) with a ∈ {allow, deny}. If a = deny then fail.

(c) Receive message from first server and check proof: Parse the message from S1 as (Rtr, sid , qid ′, 2, pk , E1, σ
′
1).

Furthermore act as a verifier in the proof π1 with S1.

(d) Decrypt password share and randomness: Decrypt F ′2 with label (sid , qid ′, C ′1, C
′
2,PK u) and fail if decryption

fails.

(e) Verify share encryption under CRS and first server’s signature: Check that C ′2 = encPK (p′2; s′2) and that
verPS1((sid , qid ′, C ′1, C

′
2,PK u, E1, pk), σ′1) = 1.

(f) Multiply encryption by quotient of own shares: Choose random r2, z ←R Zq and compute E2 ← encpk (p2/p′2;
r2) and E ← (E1 × E2)z.

(g) Send signed encrypted quotient to first server: Compute σ′2 ← sigSS2
(sid , qid ′, C ′1, C

′
2,PK u, E) and send

(E, σ′2) to S1.

(h) Prove to first server that E is correct: Perform with S1 the proof protocol:

π2 := ZK{(p2, p
′
2, s2, s

′
2, r2, z) : E = (E1 × encpk (p′2/p2; r2))z

∧ C2 = encPK (p2; s2) ∧ C ′2 = encPK (p′2; s′2)}((sid , qid ′, 2)) .

Step R4: The first server S1 proceeds as follows.

(a) Receive message from second server and verify proof: Parse the message from S2 as (E, σ′2) and interact with
S2 in π2.

(b) Verify signature and check z 6= 0: Verify that verPS2
((sid , qid ′, C ′1, C

′
2,PK u, E), σ′2) = 1 and that E 6=

encpk (1; 0).

(c) Learn whether password matches: Decrypt E using sk and verify that it decrypts to 1.

(d) Inform and convince second server of result: Prove to S2 that E indeed decrypts to 1 with the protocol:

π3 := ZK{(sk) : 1 = decsk (E)}((sid , qid ′, 3)) .

(e) Verifiably encrypt key share for the user: Compute ciphertext C̃ ′1 ← encPKu
(K1; s̃′1) with s̃′1 ←R Zq and send

C̃ ′1 to S2. Prove to S2 that C̃ ′1 encrypts the same key share as C̃1 from the setup phase:

π4 := ZK{(K1, s̃1, s̃
′
1) : C̃1 = encPK (K1; s̃1) ∧ C̃ ′1 = encPKu(K1; s̃′1)}((sid , qid ′, 4)) .

Step R5: The second server S2 proceeds as follows.

(a) Receive message from first server and verify proof: Parse the message from S1 as C̃ ′1 and participate in proofs
π3 and π4 with S1.

(b) Verifiably encrypt key share for the user: Compute ciphertext C̃ ′2 ← encPKu
(K2; s̃′2) with s̃′2 ←R Zq and send

C̃ ′2 to S1. Prove to S1 that C̃ ′2 encrypts the same key share as C̃2 from the setup phase:

π5 := ZK{(K2, s̃2, s̃
′
2) : C̃2 = encPK (K2; s̃2) ∧ C̃ ′2 = encPKu(K2; s̃′2)}((sid , qid ′, 5)) .

(c) Send signed result to user and finish protocol: Compute τ ′2 ← sigSS2
(sid , qid ′, F ′1, C

′
1, C

′
2,PK u, C̃

′
1, C̃

′
2) and

send (C̃ ′2, τ̃
′
2) to U ′. Output (RRlt, sid , qid ′, succ).

Step R6: The first server S1 proceeds as follows.

(a) Receive message from second server and verify proofs: Parse the message from S2 as C̃ ′2 and interact with it
in π5.

(b) Send signed result to user and finish protocol: Compute τ ′1 ← sigSS1
(sid , qid ′, F ′1, C

′
1, C

′
2,PK u, C̃

′
1, C̃

′
2) and

send (C̃ ′1, τ
′
1) to U ′. Output (RRlt, sid , qid ′, succ).

Step R7: The user U ′ proceeds as follows.

(a) Receive messages from both servers: Parse the messages from S1 and S2 as (C̃ ′1, τ
′
1) and (C̃ ′2, τ

′
2), respectively.
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(b) Verify signatures: Verify that verPS1((sid , qid ′, F ′1, C
′
1, C

′
2,PK u, C̃

′
1, C̃

′
2), τ ′1) = 1 and that verPS2((sid , qid ′,

F ′2, C
′
1, C

′
2,PK u, C̃

′
1, C̃

′
2), τ ′2) = 1.

(c) Compute and output key: Compute the two key shares K1 ← decSKu(C̃ ′1) and K2 ← decSKu(C̃ ′2), reconstruct
the key as K ← K1 ·K2, and output (RRlt, sid , qid ′,K ).

4 Concrete Instantiation

In this section we give constructions of the encryption schemes and zero-knowledge protocols with which our
2PASS protocol can be instantiated. They are secure under the decisional Diffie-Hellman (DDH) assumption;
the proofs require the random-oracle model. For the signature scheme and the CCA2-secure encryption, one
could for example use Schnorr [Sch91, PS96] signatures and ElGamal encryption with the Fujisaki-Okamoto
transformation [ElG85, FO99] be used since the DDH assumption also suffices for their security in the RO model.
We also provide an efficiency analysis.

4.1 ElGamal Encryption

The ElGamal encryption scheme [ElG85] assumes a generator g of a group G = 〈g〉 of prime order q. The secret
key x is chosen at random from Zq . The public key is y = gx. To encrypt a message m ∈ G, select a random
r and compute c1 ← yrm and c2 ← gr. Output as ciphertext is the tuple (c1, c2). To decrypt (c1, c2), compute
m← c1/c

x
2 .

It is well known that the ElGamal encryption scheme is CPA secure and is homomorphic: i.e., E = E1 × E2

is defined as (e1, e2) = (e11, e12)× (e21, e22) := (e11e21, e12e22) and also we define Ez = (e1, e2)z = (ez1, e
z
2).

4.2 Zero-Knowledge Proofs and Σ-Protocols

Using the ElGamal encryption scheme will allow us to instantiate the proof protocols in our scheme by well
known and efficient Σ-protocols for statements about discrete logarithms in the group G. When referring to
the proofs above, use the following notation [CS97, CKY09]. For instance, PK{(a, b, c) : y = gahb ∧ ỹ = gahc}
denotes a zero-knowledge proof of knowledge of integers a, b, c such that y = gahb and ỹ = gahc holds, where
y, g, h, and ỹ are elements of G. The convention is that the letters in the parenthesis (a, b, c) denote quantities
of which knowledge is being proven, while all other values are known to the verifier.

Given a protocol in this notation, it is straightforward to derive an actual protocol implementing the proof.
Indeed, the computational complexities of the proof protocol can be easily derived from this notation: basically for
each term y = gahb, the prover and the verifier have to perform an equivalent computation, and to transmit one
group element and one response value for each exponent. We refer to, e.g., Camenisch, Kiayias, and Yung [CKY09]
for details on this.

The most efficient way to make these protocol concurrent zero-knowledge and simulation-sound is by the
Fiat-Shamir transformation [FS87]. In this case, we will have to resort to the random-oracle model [BR93] for
the security proof. To make the resulting non-interactive proofs simulation-sound, it suffices to let the prover
include context information such as the session and query identifiers into the label, and to include the label as
an argument to the random oracle in the Fiat-Shamir transformation.

We note, however, that there are alternative methods one could employ instead to make Σ-protocols non-
interactive that do not rely on the random oracle model (e.g., [MY04, GMY03, CKS11]). Unfortunately, these
methods come with some performance penalty. In our protocol that would impact only the servers, not the user,
so should still be very acceptable in practice.

4.3 Concrete ZK Protocols in Our Scheme

As said in the description of our scheme, we assume that the description of a group G of prime order q and a
generator g chosen through GGen(1k) is publicly available, together with a public key PK of the cryptosystem
(keyg, enc, dec). In the following we will further assume that PK = (Y, g) is a public key of the ElGamal encryption
scheme.

Proof π1 in Step R2 of the Retrieve protocol. Suppose that, in Step R2, S1 generated (pk , sk) as ((y = gx, g), x) ∈
((G,G),Zq). Let the encryptions computed in the setup and retrieve protocol be E1 = (e11, e12) = (p1/p′1y

r1 , gr1),

13



C1 = (c11, c12) = (p1Y
s1 , gs1), and C ′1 = (c′11, c

′
12) = (p′1Y

s′1 , gs
′
1) with r1, s1, s

′
1 elements of Zq . Then the proof

π1 can be instantiated with the protocol specified as:

π1 := PK{(s1, s
′
1, r1) : e12 = gr1 ∧ c12 = gs1 ∧ c′12 = gs

′
1 ∧ e11c

′
11

c11
= yr1Y s

′
1Y −s1}((sid , qid ′, 1)) .

This protocol requires both the prover and the verifier to compute four exponentiations in G (note that G can
be an elliptic-curve group).

Let us argue that the protocol indeed proves that E1 encrypts the quotient of the messages encrypted in C1

and C ′1. We know that if the prover is successful, then there are values (s1, s
′
1, r1) such that e11 = gr1 , c11 = gs1 ,

c′11 = gs
′
1 , and

e11c
′
11

c11
= yr1Y s

′
1Y −s1 hold (see e.g., [CKY09]). As we are using the ElGamal encryption scheme,

the ciphertexts encrypted in E1, C1, and C ′1 thus must be e11y
−r1 , c11Y

−s1 , and c′11Y
−s′1 , respectively. The

last term of the proof protocol
e11c

′
11

c11
= yr1Y s

′
1Y −s1 can be reformed into e11y

−r1 = (c11Y
−s1)/(c′11Y

−s′1) which
amounts to the statement that we claimed.

Proof π2 in Step R3 of the Retrieve protocol. Let the encryptions computed in the setup and retrieve protocol
be E = (e1, e2) = ((e11y

r2p2/p′2)z, (e12g
r2)z), C2 = (c21, c22) = (p2Y

s2 , gs2), and C ′2 = (c′21, c
′
22) = (p′2Y

s′2 , gs
′
2)

with z, r2, s2, s
′
2 ∈ Zq . Then the proof π2 can be instantiated with the protocol specified as:

π2 := PK{(s2, s
′
2, z, α, β, γ) : e2 = ez12g

α ∧ c22 = gs2 ∧ 1 = cz22g
−β ∧ c′22 = gs

′
2

∧ 1 = c′22
z
g−γ ∧ e1 = (

e11c21

c′21

)zyαY −βY γ}((sid , qid ′, 2)) .

where by definition α = zr2 and by proof β = zs2 and γ = zs′2. Let’s again show that this proof protocol is
indeed a proof that E is an encryption of a random power of the plaintext in E1 (let’s call it m̃) times the quotient
of the plaintexts in C ′2 and C2 (let’s call them m′ and m, respectively). Again, from the properties of the proof
protocol we know that there exist values s2, s

′
2, r2, z, α, β, γ so that the terms in the protocol specification hold.

Now from c22 = gs2 , 1 = cz22g
−β c′22 = gs

′
2 and 1 = c′22

z
g−γ we can conclude that β = zs2 and γ = zs′2 holds.

Further, the ciphertexts encrypted in C2, and C ′2 thus must be m := c21Y
−s2 , and m′ := c′21Y

−s′2 , respectively.
From the proof term e1 = ( e11c21c′21

)zyαY −βY γ we can derive that e1 = ez11(m/m′)zyα.

Also, let r1 be the value such that e12 := gr1 and let m̃ := e11y
−r1 . Thus, e2 = ez12g

α = gr1z+α and
e1 = ez11(m/m′)zyα = m̃zy−r1z(m/m′)zyα. We can write e1 = (m̃m/m′)zy−r1z+α which means that E is indeed
an encryption of (m̃m/m′)z as we claimed.

Proof π3 in Step R4 of the Retrieve protocol. The proof π3 showing that the encryption E = (e1, e2) decrypts to
1 (w.r.t. the public/secret key pair (pk , sk) = ((y = gx, g), x) that S1 has generated in Step R2 of the retrieve
protocol) can be implemented with the following protocol specification:

π3 := PK{(x) : y = gx ∧ e1 = ex2}((sid , qid ′, 3)) .

It is not very hard to see that this protocol indeed shows that E encrypts to 1.

Proofs π4 and π5 in Steps R4 and R5. The proofs in these two steps are essentially the same (just the indices are
different), so we describe only the first. Let the user’s public key PK u = (Yu, g) and let the encryptions computed

in the setup and retrieve protocol be C̃1 = (c̃11, c̃12) = (K1Y
s̃1 , gs̃1), and C̃ ′1 = (c̃′11, c̃

′
12) = (K1Y

s̃′1
u , gs̃

′
1). Then

the proof π4 can be realized with the protocol specified as

π4 := PK{(s̃1, s̃
′
1) : c̃12 = gs̃1 ∧ c̃′12 = gs̃

′
1 ∧ c̃′11

c̃11
= Y

s̃′1
u Y −s̃1}((sid , qid ′, 4)) .

It is not hard to see that this protocol indeed proves that the two ciphertexts encrypt the same plaintext.

4.4 Efficiency Analysis

Let us count the number of exponentiations in the group G when our protocol is instantiated as suggested
above and using the Fiat-Shamir transformation [FS87] to obtain simulation-sound non-interactive proofs in the
random-oracle model. We neglect operations other than exponentiations because their cost is insignificant in
comparison. The user has to perform 18 exponentiations in the Setup protocol and 19 exponentiations in the
Retrieve protocol. Each server has to do 11 exponentiations in the Setup protocol. In the Retrieve protocol, S1

and S2 need to do 26 and 30 exponentiations, respectively. (Note that some of the exponentiations by the servers
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could be optimized as they are part of multi-base exponentiations.) Finally we note that an elliptic-curve group
can be used for G and that our protocols do not require secure channels and hence avoid the additional cost of
setting these up.

The communication costs are as follows: the user sends to each server 16 group elements and receives 1 group
element from each in the Setup protocol. The user sends 11 group elements to and receives 5 group elements
from each server in the Retrieve protocol. The servers send to each other 1 group elements in the Setup protocol
and 6 (resp. 5) group elements, 6 (resp. 9) exponents, and 3 (resp. 2) hash values in the Retrieve protocol.

Therefore, our protocol is efficient enough to be useful in practice.

5 Security Analysis

Theorem 1 If the encryption scheme (keyg, enc, dec) is semantically secure, the encryption scheme (keyg2, enc2,
dec2) is CCA2 secure, the signature scheme (keygsig, sig, ver) is existentially unforgeable, and the associated proof
system is a simulation-sound concurrent zero-knowledge proof, then the Setup and Retrieve protocols securely
realize F2PASS in the FCA and FCRS -hybrid model.

When instantiated with the ElGamal encryption scheme [ElG85] for (keyg, enc, dec), ElGamal encryption
with the Fujisaki-Okamoto transformation [FO99] for (keyg2, enc2, dec2), Schnorr signatures [Sch91, PS96] for
(keygsig, sig, ver), and the Σ protocols of Section 4 [Sch91, CKY09], by the UC composition theorem and the
security of the underlying building blocks we have the following corollary:

Corollary 1 Under the decisional Diffie-Hellman assumption for the group associated with GGen, the Setup and
Retrieve protocols as instantiated above securely realize F2PASS in the random-oracle and FCA-hybrid model.

5.1 Sequence of Games

Proof of Theorem 1 Let us conceptually view all honest participants as a single interactive Turing machine,
which we will call the challenger, that obtains all inputs from the environment intended for honest parties and that
outputs the responses back to the environment. We will define a series of games with a series of challengers; the
challenger corresponding to game i is denoted Ci. In the first game, C1 receives as input the value sid = (u,S1,S2)
and runs our protocol on behalf of the honest participants, and with A as the adversary, so the environment E
receives the same view as it would receive in the real execution of the protocol. In the last game, C11 runs the
ideal protocol (via the ideal functionality) on behalf of the honest participants, and with the simulator SIM
(which we will describe in the sequel) as the adversary, so the environment receives the same view as it would
in the ideal execution. Let view i(sid , 1k) denote the view that the environment E receives when interacting with
Ci for session identifier sid and security parameter k; we will often omit sid and 1k. We will show that, for
each i, 1 ≤ i < 11, the view view i is (computationally) indistinguishable from the view view i+1 it receives when
interacting with Ci+1, denoted view i ≈ view i+1. The indistinguishability of the real world and the ideal world
then follows through a hybrid argument.

Challenger C1: The challenger runs all honest parties with the real protocol with all the inputs coming directly
from the environment. Therefore, view1 is identical to the view that E receives when honest participants execute
our protocol.

Challenger C2: Identical to C1, except that it halts (and therefore acts visibly different from C1) whenever an
honest party receives a valid signature σ under the public key PS i of an honest server Si on a message that was
never signed by Si. We have that view2 ≈ view1, because otherwise a straightforward reduction can break the
security of the underlying signature scheme.

In particular, this means that in a setup protocol, if at least one of the servers is honest and an honest user
successfully ends the setup protocol, then the honest server’s records reflect the same values (C1, C2, C̃1, C̃2) as
the user sent in Step S1, because the server signed the same values in Step S3 or S4. Likewise, in a retrieve
protocol, if at least one server is honest and an honest user recovers a key K 6= ⊥, then the honest server
performed the protocol using the same values (C ′1, C

′
2) that the user sent to it in Step R1. Moreover, if at least

one server is honest, then the absence of forged signatures ensures that if an honest user successfully recovers a
key in the retrieval protocol, then all honest servers have verified the validity of the proofs provided by the other
server.
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Challenger C3: Identical to C2, except in the case when an honest participant uses enc2 to send an encryption of
a plaintext m to an honest server: in this case, the ciphertext is computed as an encryption of 1|m|. In particular,
if an honest user interacts with an honest server Si, this is done for ciphertexts Fi sent as part of a message
(Stp, sid , qid , 1, Fi, C1, C̃1, C2, C̃2) in Step S1 and for ciphertexts F ′i sent as part of a message (Rtr, sid , qid ′, 1, F ′i ,
C ′1, C

′
2,PK u) in Step R1.

We call a setup or retrieve query intact for server Si if it was initiated by an honest user and the first message
(Stp, sid , qid , 1, . . .) or (Rtr, sid , qid ′, 1, . . .) arrives at the honest server Si unmodified. We call the query hijacked
for Si if it was initiated by an honest user but this message was modified in transit. We call the query corrupt
for Si if it was either hijacked or initiated by a dishonest user. If the query is intact, then the honest server Si
pretends that the ciphertext Fi or F ′i correctly decrypted to m, meaning that Si continues executing the real
protocol as if it decrypted to m. Otherwise, it decrypts the ciphertext from the modified message and continues
the protocol with the actual decrypted value.

We have that view3 ≈ view2, because otherwise (keyg2, enc2, dec2) is not a CCA2-secure encryption scheme by
the following hybrid argument. We define a series of hybrids; the first hybrid agrees with C2, the last one with
C3. Let `(k) be an upper bound on the total number of ciphertexts Fj and F ′j that honest participants compute
using enc2 and send to each other. For 0 ≤ i ≤ `(k), hybrid i forms the first i such ciphertexts as an encryption
of 1|m|, and the remaining ones correctly, as directed by the protocol.

Suppose that the environment could distinguish two neighboring hybrids i and i+ 1. Then we set up a reduction
that breaks labeled CCA2 security of enc2. The reduction receives as input a public key PE for enc2 and can
interact with the CCA2 challenger which will decrypt ciphertexts of its choice, except the challenge ciphertext.
The reduction assigns the public key PE to one of the honest servers at random. Up until it needs to compute
the (i + 1)st ciphertext, it interacts with E the way that C3 would, except that it does not have the decryption
key for the selected server. But whenever it needs to decrypt a ciphertext submitted by the adversary A, it
simply forwards it to the decryption oracle. When it is time to compute the i+ 1st ciphertext, if this ciphertext
needs to be computed under the public key other than PE , the reduction gives up. (Note, however, that this
happens with probability at most 1/2 and independently of the environment’s view so far.) Otherwise, it will ask
the CCA2 challenger for a challenge ciphertext, suggesting two possibilities for the plaintext: the real plaintext
m that hybrid i would encrypt, and the plaintext 1|m| that hybrid i + 1 would encrypt. After the challenge
ciphertext c has been issued, the reduction uses it as the i + 1st ciphertext Fj or F ′j . If the query is left intact,
then it proceeds as if Fj or F ′j decrypted to m and interacts with the environment the way C3 would, except that
whenever it needs to decrypt a ciphertext from the adversary, it forwards it to the decryption oracle.

What remains to be shown is why ciphertexts that are part of corrupt queries can always be queried to the
decryption oracle. The ciphertexts F1 and F2 in the setup protocol are formed using (sid , qid , C1, C2, C̃1, C̃2)
as a label. Suppose that S1 is honest, and an honest user is running the setup protocol, and the ciphertext F1

happens to be the (i+ 1)st ciphertext, so the reduction has the honest user use the ciphertext F1 = c, and send
(Stp, sid , qid , 1, F1, C1, C2, C̃1, C̃2) to S1. Suppose at some later point, S1 receives a message (Stp, sid , qid , 1, . . .)
from the adversary. If the query is intact for S1, i.e., the entire message was received correctly, then the
challenger treats F1 as an encryption of m and has S1 act accordingly. If the query is hijacked for S1, then
either the ciphertexts C1, C2, C̃1, C̃2 are different, or F1 is different. In the former case, S1 is allowed to use the
decryption oracle to decrypt F1 = c since the label is different. In the latter case, it can also use the decryption
oracle, since the ciphertext is different. Finally, if the adversary were to reuse F1 in a different hijacked query
qid ′ 6= qid , then also S1 can use the decryption oracle since the decryption label is different. We can argue the
same for the ciphertext F2 of the setup protocol as well as the ciphertexts F ′1 and F ′2 of the retrieve protocol.

Challenger C4: Identical to C3, except that, whenever an honest party performs a zero-knowledge proof, it
uses the zero-knowledge simulator instead of the prover’s algorithm. Note that, depending on the instantiation
of the zero-knowledge proofs, this may involve setting up the CRS or random oracle in such a way that the
challenger can run the simulator. Indistinguishability from C3 follows by a straightforward reduction from the
zero-knowledge property of the proof system.

Challenger C5: Identical to C4, except in the following case: when an honest user U is directed by the protocol to
compute a ciphertext c = encPK (m; r) under the public key PK in the CRS, where (m, r) will never be encrypted
to a dishonest party, U instead computes c = encPK (1; r), where 1 is the unity group element. More concretely,
this change affects the ciphertexts Ci, C̃i, C

′
i that an honest user sends to an honest server Si in Steps S1 and R1.

Whenever the protocol directs an honest server Si to prove something about the ciphertext c, C5 will, just as C4,
have Si run the zero-knowledge simulator, but now to prove the false statement that c = encPK (m; r).
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Here and in all future games, we condition the analysis on the event that the adversary does not create a new
valid zero-knowledge proof of a false statement. A hybrid argument over the proofs produced by the adversary
can be used that this holds under the simulation soundness of the proof protocol. Conditioning on this event,
challenger C5 is indistinguishable from C4 by the semantic security of (keyg, enc, dec) through a simple hybrid
argument. Therefore, view5 ≈ view4.

Challenger C6: Identical to C5, except that: (1) the public key “in the sky” PK is generated so that C6 knows the
corresponding secret key SK . Since PK is distributed exactly as in a real CRS, this hop is purely conceptional.

Further, C6 is running, on the side, what will, in several additional steps, become the ideal functionality F ; for
now we will think of it as a registry R of what has happened so far corresponding to the sid of this session (recall
that a challenger receives the value sid as input). The existence of the registry R is internal to C6 and has no
effect on view6.

Whenever a setup query qid using password p and key K remains intact for an honest server Si, C6 creates the
record (AStp, qid ,U , p,K ) and adds it to the registry R. It then continues running the setup protocol with S1

and S2 on behalf of the honest user and marks this query qid as succ for an honest server Si when Si outputs
(SRlt, sid , qid , succ), or marks it fail for Si if something goes wrong. When the query is marked succ for
all honest servers of S1 and S2, C6 stores a record (Stp, p,K ) in R. Further, when U finished the protocol
successfully, C6 marks the query qid as succ for U .

Whenever the first message of a corrupt setup query arrives at an honest server Si, C6 uses SK to decrypt the
ciphertexts (C1, C̃1, C2, C̃2) and recover p and K from them. It then stores a record (AStp, qid ,U , p,K ) in R
and marks query qid as succ for Si when Si outputs (SRlt, sid , qid , succ). Note that two honest servers may
receive different ciphertexts (C1, C̃1, C2, C̃2) for a corrupt query, leading to two different (AStp, . . .) records to
be created. However, given that the adversary does not forge signatures, the honest servers will never conclude
such a protocol successfully.

Similarly, whenever the first message of a corrupt retrieve query arrives at an honest server Si, C6 uses SK to
decrypt the ciphertexts C ′1 and C ′2 to recover p′, creates a record (ARtr, qid ′,U ′, p′) and marks this query qid ′ as
succ for Si when Si outputs (RRlt, sid , qid ′, s).

It is important to note that, starting with C5, whenever at least one of the servers is honest, the protocol messages
that our challengers generate on behalf of honest users are distributed independently of the actual passwords and
keys that this honest user receives as input from the environment. The same holds for messages generated on
behalf of honest servers in the setup protocol. However, in the retrieve protocol, messages generated on behalf
of the honest servers might still depend on the input password in two specific ways: (1) an honest S1 will pretend
that (C1, C

′
1) decrypt to (p1, p

′
1) and will use these values when computing the ciphertext E1 in Step R2; and (2)

an honest S2 will, similarly, use (p2, p
′
2) in computing E in Step R3. The next three game hops will eliminate

this dependence, as well as the dependence that messages computed in steps R4 and R5 have on the key stored
and successfully retrieved by an honest user.

Challenger C7: Suppose that an honest server S2 is engaged with a server S1 in a Retrieve attempt for a
particular (sid , qid ′). C7 differs from C6 in how it computes the ciphertext E in Step R3.

First, note that C7 can look up if its registry R has a record (Stp, p,K ) (see the description of C6 for the definition
of R). If no such record exists, then the honest server S2 could not have accepted in the setup protocol, and
so the retrieve protocol will end there (and there will be no deviation from what C6 would have done). Else,
if it exists: if the current query qid ′ is a corrupt query for S2, then decrypt C ′1 and C ′2 to recover p′; else the
environment explicitly provided p′ as input to C7 on behalf of the honest user. If p = p′, then form E as a random
encryption of 1; else as an encryption of a random value. The proof is executed, as done by all the challengers
starting with C4, via the zero-knowledge simulator.

If we condition on the adversary’s being unable to prove a false statement (which happens with overwhelming
probability), then view7 is identical to view6, because the proof π1 guarantees that E1 is an encryption of p1/p′1,
and so following S2’s protocol would make E an encryption of 1 whenever the passwords match, and an encryption
of a random value whenever they don’t. By simulation soundness, we conditioned on an event which happens
with all but negligible probability, and therefore view7 ≈ view6.

Challenger C8: Suppose that an honest server S1 is engaged with S2 in a Retrieve attempt for a particular (sid ,
qid ′). C8 differs from C7 in how it computes the ciphertext E1 in Step R2: it always computes E1 as an encryption
of 1. If the current query qid ′ is corrupt for S1, then C8 recovers p′ by decrypting C ′1 and C ′2; else p′ is known to
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it. In Step R4, if p′ 6= p, it simply fails; if p′ = p, it continues the protocol as if the encryption E received from
S2 decrypts to 1.

Conditioning again on the adversary’s being unable to prove a false statement, we can construct a reduction that
shows that, if view8 is distinguishable from view7, then the homomorphic encryption scheme is not semantically
secure. The reduction will use a standard hybrid argument; the challenge ciphertext will either be an encryption
of the value p1/p′1 or an encryption of 1. Let C2 be the encryption of p2 that S1 stored in its state at the end
of its successful setup phase, and let p′2 either be the actual decryption of the ciphertext C ′2 (if this is a corrupt
query) or the pretended decryption of C ′2 (if this is an intact query). The soundness of the proofs guarantees that,
whenever E1 is an encryption of p1/p′1, E can only decrypt to 1 when p1/p′1 = p2/p′2 or when z = 0; the former
case means that p′ = p, i.e., the password match, the latter case is ruled out by the test that E 6= encpk (1; 0).

Challenger C9: This challenger differs from the previous one in how an honest server Si forms the ciphertext
C̃ ′i in Steps R4 and R5.

If a retrieve query qid ′ originates from an honest user and is intact for Si, then C9 computes the ciphertext C̃ ′i as
an encryption of 1. Otherwise, i.e., if this retrieve query is corrupt but the passwords matched, C9 proceeds as
follows. If the account was set up through a corrupt query, then C9 computes C̃ ′i as an encryption of the correct
share Ki contained in C̃i at the time of set up, which C9 decrypted using the secret key SK . If the account was
set up by an honest user with an intact query, we distinguish between the case where one server is corrupt and
the case that both servers are honest. In the first case, let Si be honest and Sj be corrupt. If this is the first time
that a retrieve with the correct password is performed, then C9 encrypts a random share Ki ←R G and simulates
the proofs π4 or π5; in all subsequent queries, it uses the same share Ki. In the second case, where both servers
are honest, if this is the first time that a retrieve with the correct password is performed, C9 looks up the record
(Stp, ·,K ) in R, chooses a random K1 ←R G, computes K2 ← K/K1, computes C̃ ′i as an encryption of Ki, and
simulates the proofs π4 and π5. In all subsequent retrieve queries, it computes C̃ ′i using the same share Ki.

Note that for the first corrupt retrieve query with a correct password, the ciphertext C̃ ′i is distributed exactly as
in C8, namely as the encryption of the correct share Ki if the account was set up through a corrupt query; as the
encryption of a random share Ki if the account was set up through an intact honest query and only Si is honest;
and as the encryption of random shares of the real key K if the account was set up through an intact honest
query and both servers are honest. Moreover, in all subsequent corrupt retrieve queries with a correct password,
the same share Ki is encrypted as in the first such query, as in C8.

We have left to show that if the retrieve query originates from an honest server and is intact for Si, computing
C̃ ′i as an encryption of 1 does not distort the adversary’s view. If C9 uses the correct public key PK u that was
generated by the simulated honest user, then view9 ≈ view8 by the semantic security of the encryption scheme
(keyg, enc, dec). We have left to argue that the challenger uses the correct PK u. This follows from the very
definition of an intact query: the query is considered intact if the first message (Rtr, sid , qid ′, 1, F ′i , C

′
1, C

′
2,PK u)

that an honest server Si receives is identical to what the honest user sent. Therefore, as long as the query is
intact, C9 always encrypts C̃ ′i under the correct public key PK u created by the honest user.

Note that at this point, if at least one of the servers is honest, then the protocol messages for intact queries are
distributed independently of the honest user’s input, both in the setup and in the retrieval protocols, except for
the one bit of information whether p = p′. We still want to make sure that in this case, an honest user who
provides the correct password retrieves the correct key, and one who does not provide the correct password, does
not retrieve anything; this we will do in the next step.

Challenger C10: Same as C9, except that it halts if one of the following bad events happen: (1) the event that
an honest user carries out a retrieval with at least one honest server and the correct password, and in the end
of the retrieval protocol the user outputs a key K ′ that is not equal to K stored in the registry R; or (2) the
event that an honest user carries out a retrieval with at least one honest server and an incorrect password, but
successfully ends the retrieval protocol with some key K ′; or (3) the event that in a corrupt retrieve query with
an incorrect password, an honest server Si encrypts his key share Ki under PK u; or (4) the event that in a
hijacked setup or retrieve query, the honest user completes the protocol successfully.

Suppose that (1) an honest user performs a retrieve with some password p′ and outputs a key K ′. Let us consider
the case when S1 is adversarial, while S2 is honest. Since S2 is honest and signed the values (C ′1, C

′
2,PK u, C̃

′
1, C̃

′
2)

in signature τ ′2, we know that S2 successfully verified the proofs π1, π3 and π4. (The signature τ ′2 is not a forgery
because otherwise the challenger would have halted – see the description of C2.)

We know that if S2 accepted the proofs π1 and π3, then the password defined by C ′1, C
′
2 must have matched that

defined by C1, C2 (see Challenger C8). By the simulation soundness of the proof π4, which was verified by the
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honest S2, ciphertext C̃ ′1 contains the same plaintext K1 as the ciphertext C̃1 that S2 stored during the successful
setup protocol. We also know that the challenger simulates the honest server and user in such a way that the
user will pretend that the ciphertext C̃ ′2 will decrypt to K2, the same plaintext that it pretended to be present in
C̃2 during the setup. Therefore, by simulation soundness of the proof system, the user will output the real key
K = K1K2.

If, on the other hand, in the case (2) that the password p′ doesn’t match, then S2 will never create a signed
ciphertext C̃ ′2, but rather output fail at the latest in Step R5 after verifying π3, because it replaced the ciphertext
E with the encryption of a random group element, so that, conditioned on the adversary not being able to create
valid proofs of false statements, S1 will not be able to create a convincing proof π3 that E decrypts to 1.

In summary, S2 will only sign (C ′1, C
′
2,PK u, C̃

′
1, C̃

′
2) if the password p′ defined by C ′1, C

′
2 matches the password

p defined by the ciphertexts C1, C2 that it recorded during setup, and if the key K ′ defined by C̃ ′1, C̃
′
2 matches

the key K defined by the ciphertexts C̃1, C̃2 that it recorded during setup. Therefore, if the password is correct,
an honest user will either receive the correct key or output fail; if the password is false, then an honest user
will always output fail.

The case when S2 is corrupt and S1 is honest is analogous and relies on the fact that an honest server’s signature
on the message that the user receives in Step R7 guarantees that the honest server has verified proofs π2 and π5,
and on the fact that if the password is incorrect, S1 replaces E1 with an encryption of a random group element,
causing E to be an encryption of a random group element as well.

To argue that case (3) cannot occur, assume that a corrupt retrieve query is made with C ′1, C
′
2 that decrypt

to shares of an incorrect password p′ 6= p. The challenger will decrypt the password shares p′1, p
′
2 from C ′1, C

′
2

and manipulate the ciphertext E1 (if S1 is honest) and/or E (if S2 is honest) to make sure that honest servers
conclude that the password is incorrect and output fail in Steps R5 and/or R6.

Finally, (4) cannot occur because the signatures τi received in Step S5 and the signatures τ ′i received in Step R7
authenticate the full first message of the protocol as it was received by server Si. If the query was hijacked for
Si, then the first message received by Si was different than what the honest user sent out, so the signature τi or
τ ′i will not verify correctly.

Challenger C11: In this game, the idea is to give the environment a view that is identical to view10, but to have
C11 internally run the full-fledged ideal functionality F , and to have all the honest participants run the ideal
protocol with F ; interaction with the adversary will now be based solely on what F sends to the ideal-world
adversary. To this end, we turn the registry R into the internal book-keeping of F : F keeps track of what the
correct password is, and at what stage various attempts at setup and retrieve currently are. Essentially, C11 is
now viewed not as a single interactive Turing machine (ITM), but as several ITMs interacting with each other:
there is an ITM that executes the ideal functionality F ; a “dummy” ITM for each ideal-world honest participant
that simply relays messages between the environment and F ; and an ITM SIM that talks to F on behalf of the
ideal-world adversary and to A on behalf of the honest participants.

We have already described F and the ideal honest parties in Section 2. What remains to do is to describe
SIM and to verify that the resulting view11 is identical to view10. The description of SIM is given in detail
in Section 5.2. In a nutshell, in order to view C10 as consisting of all these different ITMs, we observe that the
protocol messages that the honest parties inside C10 send out either do not depend on the correct passwords and
keys at all, so these protocol messages can be computed by the simulator SIM without access to the actual
records, or they depend on the mere fact whether p′ = p and the registered key K , both of which are provided
by F to SIM when they are needed.

Although the way that C11 is structured internally is different from the way C10 is structured (because C10 is not
separating its computation steps into those carried out by F , SIM, and the honest ideal parties), each message
C11 sends to A and E is computed identically to the messages that C10 sends to them, so this hop is purely
conceptual.

5.2 The Simulator

Here we describe the simulator SIM defined as part of C11 that acts as an adversary in the ideal world against
the ideal functionality and that uses the real-world adversary A in such a way that the environment cannot
distinguish whether it’s interacting with A and the honest parties in the real world or with SIM and dummy
parties in the ideal world.
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We describe the simulator for a single session sid = (u,S1,S2), i.e., for a single account with username u
registered with servers S1 and S2. In the descriptions below, we denote by “P” the simulator-created real-
world machines corresponding to ideal-world participant P. During the entire execution, the simulator relays all
inputs from the environment to the real-world adversary A and relays all outputs of the adversary back to the
environment. The simulator first generates a key pair (PK ,SK ) ←R keyg(1k) and answers all queries to FCRS

with PK , so that it knows the decryption key for the CRS. It also generates key pairs (PE i,SE i)←R keyg2(1k)
and (PS i,SS i) ←R keygsig(1k) for all simulated honest servers “Si” and responds to queries (Retrieve,Si) to
FCA with (Retrieve,Si, (PS i,SS i)). For all other queries, it honestly executes the code of the functionality FCA.

5.2.1 Setup by an Honest User

There are three cases: (a) both servers are honest, (b) both servers are corrupt, and (c) one of the servers is
corrupt.

(a) Both servers honest The setup protocol gets activated when the environment provides an input (Stp, sid ,
qid , p,K ) to an honest user U , who relays it to F . As a result, SIM receives (Stp, sid , qid ,U) from F . SIM
will simulate all parties “U”, “S1”, and “S2”. SIM starts the setup protocol with the modifications described in
Challengers C1 through C11—recall that these modifications guarantee that the messages that honest participants
exchange are distributed independently of p and K ) for “U”. It therefore computes ciphertexts Fi, Ci, and C̃i
as encryptions of ones of the correct length. The simulator also records (AStp, qid ,⊥,⊥).

The first server that receives a message (Stp, sid , qid , 1, Fi, C1, C̃1, C2, C̃2). Recall that if this message is
identical to the message sent by “U”, then we call this query qid is intact for Si, otherwise we call it hijacked
for Si.

If the query is intact for Si, then each simulated server “Si” continues the protocol but skips the Steps S2(c-d)
or S3(c-d) where Fi is decrypted and tested against Ci and C̃i. When “Si” outputs (SRlt, sid , qid , s), then SIM
sends (SRlt, sid , qid ,Si, s) to F and marks qid as s for Si. If now qid is marked succ for S1 and S2, then
the simulator records (Stp,⊥,⊥). When the simulated user “U” outputs (SRlt, sid , qid , s), then SIM sends
(SRlt, sid , qid ,U , s) to F .

Note that because honest users in the real protocol only output succ after having received signed success
statements from both servers, SIM can correctly steer the honest users in the ideal world, where the ideal
functionality imposes that users only output succ if the query is intact and after both servers have output
succ. Also note that, if the setup was successful, the simulator has a record (Stp,⊥,⊥), while F has recorded
(Stp, p,K ) for the actual password p and key K .

If the query is hijacked for Si, then the server “Si” who received the first message (Stp, sid , qid , 1, . . .) uses
the secret key SK corresponding to PK in the CRS to decrypt the ciphertexts C1, C̃1, C2, C̃2 to obtain shares
p̂1, K̂1, p̂2, K̂2. It computes p̂ ← p̂1p̂2 and K̂ ← K̂1K̂2 and sends a message (SHjk, sid , qid , p̂, K̂ ) to F . It also
creates a record (AStp, qid , p̂, K̂ ) and marks qid as hjkd for A. Other than that, “Si” simply follows the real
protocol.

When any of the simulated servers “Sj” outputs (SRlt, sid , qid , s), then SIM sends (SRlt, sid , qid ,Sj , s) to

F and marks qid as s for Si. If now qid is marked succ for S1 and S2, then the simulator records (Stp, p̂, K̂ ).
When the simulated user “U” outputs (SRlt, sid , qid , fail), then SIM sends (SRlt, sid , qid ,U , fail) to F .

Note that “U” will never output succ if the query is hijacked for Si, because the signature τi received in
Step S5 will not verify correctly. Also note that if all honest servers successfully finished the protocol, SIM will
have a record (Stp, p,K ) for the same password p and key K as recorded in the ideal functionality F .

(b) Both servers corrupt As soon as the environment provides input (Stp, sid , qid , p,K ) to U , SIM receives
(Stp, sid , qid ,U , p,K ) from F . SIM simulates only “U”, which interacts with the servers controlled by A. The
simulator lets “U” perform a setup protocol on input (Stp, sid , qid , p,K ). When user “U” outputs a message
(SRlt, sid , qid , s), SIM outputs (SRlt, sid , qid ,U , s) to F . The simulator does not record anything; note that
the ideal functionality F also doesn’t create a record (Stp, ·, ·) if both servers are corrupt.

(c) One server corrupt Let Si be honest and Sj be corrupt. When the environment provides input (Stp, sid ,
qid , p,K ) to U , SIM receives (Stp, sid , qid ,U) from F . SIM simulates the real-world user “U” and server
“Si” in interaction with A, who plays the role of Sj . “U” executes the Setup protocol with random shares

p̂1, p̂2, K̂1, K̂2 ←R G but with Fi, Ci, and C̃i being encryptions of ones (see the description of challengers C3 and
C5).
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If the query is intact for Si, i.e., the message (Stp, sid , qid , 1, Fi, C1, C̃1, C2, C̃2) that “Si” receives is identical
to what was sent by “U”, then SIM creates a record (AStp, qid ,⊥,⊥) and lets “Si” continue the setup protocol,
pretending that all ciphertexts decrypted correctly and simulating all proofs. If, on the other hand, the query is
hijacked, then SIM decrypts the ciphertexts C1, C̃1, C2, C̃2 using SK to recover p̂1, K̂1, p̂2, and K̂2, respectively,
computes p̂ ← p̂1p̂2 and K̂ ← K̂1K̂2, and sends a message (SHjk, sid , qid , p̂, K̂ ) to F . It also creates a record
(AStp, qid , p̂, K̂ ) and marks qid as hjkd for A.

When “Si” outputs (SRlt, sid , qid , s), SIM sends (SRlt, sid , qid ,Si, s) to F . If s = succ then it looks up
record (AStp, qid , p,K ) and records (Stp, p,K ). When “U” outputs (SRlt, sid , qid , s′), then SIM sends (SRlt,
sid , qid ,U , s′) to F .

Note that, if Si outputs succ, we have that (p,K ) = (⊥,⊥) if the query is intact and (p,K ) = (p̂, K̂ ) if the
query is hijacked. In the latter case, SIM’s record matches that of F , but in the former case it does not.

5.2.2 Setup by a Dishonest User

Again, there are three cases: (a) both servers are honest, (b) both servers are corrupt, and (c) one of the servers
is corrupt.

(a) Both servers honest We have to ensure that F will record the correct p and K if the setup protocol suc-
ceeds and that the outputs that F sends to the ideal-world S1 and S2 are correct in terms of content as well as tim-
ing with respect to the real-world S1 and S2. To this end, SIM will run simulated parties “S1” and “S2” that fol-
low the normal Setup protocol. However, when a server “Si” receives a message (Stp, sid , qid , 1, Fi, C1, C̃1, C2, C̃2)
from A as coming from real-world user U , then SIM decrypts ciphertexts C1, C̃1, C2, C̃2 using the secret key SK
corresponding to PK in the CRS to obtain shares p1,K1, p2,K2, computes p ← p1p2 and K ← K1K2, and sends
a message (Stp, sid , qid , p,K ) to F as coming from ideal-world user U . (This actually causes the Stp message to
be sent twice for the same qid , once for “S1” and once for “S2”, but the message to arrive last is simply ignored
by the functionality. The decrypted password and key may even be different for both cases, but then the honest
servers “Si” will output fail anyway.) It also creates a record (AStp, qid , p,K ).

When a server “Si” outputs (SRlt, sid , qid , s), then SIM sends (SRlt, sid , qid ,Si, s) to F and marks qid as s
for Si. If now qid is marked succ for S1 and S2, then the simulator looks up record (AStp, qid , p,K ) and records
(Stp, p,K ).

Note that the real protocol will never output succ without having received the first message, so the setup
result is always delivered after a valid setup request. Also note that SIM will have a record (Stp, p,K ) for the
same password p and key K as is recorded in the ideal functionality F .

(b) Both servers corrupt This case is entirely internal to the adversary, and there is nothing for the simulator
to do.

(c) One server corrupt Let Si be honest and Sj be corrupt. SIM simulates a real-world party “Si” which
interacts with the adversarial U and Sj . Its strategy is similar to case (a) above. Namely, when “Si” receives from

U a message (Stp, sid , qid , 1, Fi, C1, C̃1, C2, C̃2) for “Si”, it decrypts the shares p1,K1, p2,K2 using SK , computes
p ← p1p2 and K ← K1K2, sends a message (Stp, sid , qid , p,K ) to F , and creates a record (AStp, qid , p,K ). When
“Si” outputs (SRlt, sid , qid , s), then SIM sends (SRlt, sid , qid ,Si, s) to F . If s = succ, then the simulator looks
up record (AStp, qid , p,K ) and records (Stp, p,K ).

Note that also in this case, the record (Stp, p,K ) kept by SIM is identical to that kept by F .

Records of the Simulator The simulator SIM will have a single record (Stp, ·, ·) if at least one server is
honest and if all honest servers successfully completed the setup for some setup query qid . This matches the way
F maintains a record (Stp, ·, ·), but the contents of the record held by SIM and F may be different. Namely,
SIM will have the correct password and key on file if the setup succeeded for a corrupt query (i.e., a query that
was initiated by a dishonest user, or a query initiated by an honest user but the first message was modified on
the network), but will have ⊥ in their place if it succeeded for an intact query.

For our protocol, when both servers are honest, it is possible that “S2” successfully completed setup in Step S3
but that “S1” either didn’t yet reach Step S4 or even failed in Step S4 (due to the adversary delaying or tampering
with the message coming from “S2”, respectively). In this case, SIM will have registered state for “S2” and will
have marked qid as succ for S2, but not for S1. This matches F ’s records at the same point, which will have qid
marked as succ for S2 but unmarked or marked as fail for S1.
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Note that due to Step S4, the inverse situation where “S1” accepted a setup that “S2” did not (yet) accept,
cannot occur. Consequently, it also cannot occur that “S1” and “S2” accepted different setup queries.

5.2.3 Retrieve by an Honest User

Consider an honest user carrying out the retrieval protocol. We again have three cases: (a) both servers are
honest, (b) both servers are corrupt, and (c) one server is corrupt. Note that the user who performs the retrieve
may not be the same as the user who created the account.

(a) Both servers honest Here SIM simulates the real-world user “U ′” and both real-world servers “S1”
and “S2”; the real-world adversary A controls the network between them. The protocol starts when SIM
receives (Rtr, sid , qid ′,U ′) from the ideal functionality F . SIM lets “U ′” executes the Retrieve protocol with the
simulated honest servers “S1” and “S2” as follows: the step R1 is computed as per modifications described in
Challengers C3 and C5, i.e., with ciphertexts Fi and C ′i encrypting ones instead of the real password. Assuming
that the adversary delivers messages sent between honest participants, the servers “S1” and “S2” also follow the
protocol, with the modifications described below.

If the message (Rtr, sid , qid ′, 1, F ′1, C
′
1, C

′
2,PK u) arrives at server “Si” intact, then SIM continues the sim-

ulation as follows. When “Si” outputs (RNtf, sid , qid ′), SIM sends (RNtf, sid , qid ′,Si) to F . Whenever SIM
receives (Perm, sid , qid ′,Si, a) from F , SIM provides “Si” with input (Perm, sid , qid ′, a).

If SIM receives (Perm, sid , qid ′,Si, deny) from F for at least one of S1,S2 (this corresponds to the event
when a server is directed by the environment not to participate in the retrieval because, for example, too many
unsuccessful attempts have been made to retrieve for this sid), then the simulated protocol will fail eventually.

If the environment permits both ideal servers to continue (i.e., if F obtains input (Perm, sid , qid ′,Si, allow) for
both S1 and S2), then SIM receives an additional message (Rtr, sid , qid ′, c,⊥) indicating whether the password
provided by the ideal-world user U ′ is correct. If c = wrong then SIM continues executing the modified protocol
by letting “S1” replace ciphertext E1 with an encryption of 1, letting “S2” replace E with an encryption of a
random group element, causing “S1” to fail in Step R4(c), and by letting both servers simulate all proofs (see C4,
C7, and C8). If c = correct, then “S1” and “S2” replace E1, E, C̃ ′1, and C̃ ′2 with encryptions of ones, respectively,
and fake all proofs (see C7, C8, and C9).

If the message (Rtr, sid , qid ′, 1, F ′1, C
′
1, C

′
2,PK u) received by server “Si” is not the same as was sent by the

user, however, then the query was hijacked by the adversary. In this case, SIM decrypts p̂′1 and p̂′2 from C ′1 and
C ′2 using SK , computes p̂′ ← p̂′1p̂′2, and sends a message (RHjk, sid , qid ′, p̂′) to F .

It then continues the simulation of “S1” and “S2” similar to the case of a retrieve by a corrupt user described
in Section 5.2.4(a). Namely, when “Si” outputs (RNtf, sid , qid ′), then SIM sends (RNtf, sid , qid ′,Si) to F . If
SIM receives two messages (Perm, sid , qid ′,S1, allow) and (Perm, sid , qid ′,S2, allow), then it also receives a
message (Rtr, sid , qid ′, c,K ) from F indicating whether the password is correct, and if it is correct, including the
key K .

If c = wrong then SIM lets “S1” replace ciphertext E1 with an encryption of 1, lets “S2” replace E with
an encryption of a random group element, lets “S1” fail in Step R4(c), and simulates all proofs. If c = correct,
then SIM lets “S1” and “S2” replace E1 and E with encryptions of ones and lets them fake all proofs (see C7
and C8). If this account was set up through a corrupt setup query, then “S1” and “S2” have correct shares K1

and K2 of the actual key K in their state information. In this case, the ciphertexts C̃ ′1 and C̃ ′2 are constructed
normally, containing the same key shares K1 and K2 as registered in the state information during setup. If this
account was setup through an intact setup query from an honest user and this is the first time that a dishonest
user retrieves it with the correct password, then SIM chooses K1 ←R G, computes K2 ← K/K1, stores these
shares in the states of “S1” and “S2”, respectively, and encrypts them to create ciphertexts C̃ ′1 and C̃ ′2, simulating
all proofs. For all subsequent retrieve queries by a dishonest user with the correct password, the same key shares
K1 and K2 are used, as described in challenger C9.

Both for intact and hijacked queries, SIM continues the rest of the protocol as follows. When “Si” outputs
(RRlt, sid , qid ′, s), then SIM sends (RRlt, sid , qid ′,Si, a) to F , where a ← allow if s = succ and a ← deny if
s = fail. Note that s = succ can only occur when c = correct, i.e., after F communicated to SIM that the
password provided by U ′ in the ideal world is correct. Hence, by sending (RRlt, sid , qid ′,Si, allow) to F , the
ideal-world Si will also output (RRlt, sid , qid ′, succ).

When “U ′” outputs (RRlt, sid , qid ′, s), then SIM sends (RRlt, sid , qid ′,U ′, a) to F , where a ← allow if
s = succ and a← deny if s = fail.
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(b) Both servers corrupt In this case SIM simulates “U ′”. First, SIM receives (Rtr, sid , qid ′,U ′, p′) from
F . It starts the honest retrieve protocol for “U ′” on input (Rtr, sid , qid ′, p′). When the user “U ′” eventually
outputs (RRlt, sid , qid ′,K ′, s), then SIM sends (RRlt, sid , qid ′,U ′, deny,⊥) to F if (K ′, s) = (⊥, fail), or sends
(RRlt, sid , qid ′,U ′, allow,K ′) otherwise.

(c) One server corrupt Let Si be honest and Sj be corrupt. SIM receives (Rtr, sid , qid ′,U ′) from F . SIM
creates real-world “U ′” and “Si” and talks on their behalf to Sj , played by A. In the simulation of “U ′”, the
simulator picks p′j ←R G, it replaces C ′i and F ′i with encryptions of ones (see C3 and C5).

We first consider the case of an intact query for Si, i.e., where the first message (Rtr, sid , qid ′, 1, F ′1, C
′
1, C

′
2,

PK u) received by “Si” is the same as what was sent by “U ′”. When “Si” outputs (RNtf, sid , qid ′), then SIM
sends (RNtf, sid , qid ′,Si) to F . When SIM receives (Perm, sid , qid ′,Si, a) from F , then SIM provides input
(Perm, sid , qid ′, a) to “Si”.

If a = allow, meaning that the environment let Si proceed with the retrieve protocol, then SIM as the
ideal-world adversary receives a message (Rtr, sid , qid ′, c,⊥) from F , indicating whether the password submitted
by U ′ in the ideal world was correct. At this point, “Si” proceeds with the protocol with the adversarial Sj
according to challengers C7, C8, and C9. Namely, if Si = S1 and c = correct, then “S1” replaces E1 and C̃ ′1 with
encryptions of ones, pretends that E decrypted to 1, and simulates all proofs. If Si = S1 and c = wrong, then
“S1” replaces E1 with encryptions of ones, simulates all proofs, and in Step R4 fails. If Si = S2 and c = wrong,
then “S2” replaces E and C̃ ′2 with encryptions of ones and simulates all proofs. If Si = S2 and c = correct,
then “S2” replaces E with the encryption of a random group element, causing it to fail in Step R5.

When “Si” outputs (RRlt, sid , qid ′, s), then SIM sends (RRlt, sid , qid ′,Si, a) to F , where a ← allow if
s = succ and a ← deny if s = fail. When the simulated user “U ′” eventually outputs (RRlt, sid , qid ′,K ′, s′),
SIM sends (RRlt, sid , qid ′,U ′, a,⊥) to F , where a← allow if s′ = succ and a← deny if s′ = fail.

In the case that the query is hijacked for Si, i.e., where the first message (Rtr, sid , qid ′, 1, F ′1, C
′
1, C

′
2,PK u)

received by “Si” was modified in transit over the network, SIM proceeds as follows. It decrypts p̂′1 and p̂′2 from
C ′1 and C ′2 using SK , computes p̂′ ← p̂′1p̂′2, and sends a message (RHjk, sid , qid ′, p̂′) to F .

It then continues the simulation of “Si” similar to the case of a retrieve by a corrupt user described in
Section 5.2.4(c). Namely, when “Si” outputs (RNtf, sid , qid ′), then SIM sends (RNtf, sid , qid ′,Si) to F . If
SIM receives a message (Perm, sid , qid ′,Si, allow), then it also receives a message (Rtr, sid , qid ′, c,K ) from F
indicating whether the password is correct, and if it is correct, including the key K .

If Si = S1 and c = wrong then SIM lets “S1” replace ciphertext E1 with an encryption of 1 and lets “S1”
fail in Step R4(c), simulating all proofs. If Si = S1 and c = correct then SIM lets “S1” replace E1 with an
encryption of 1 and lets it fake all proofs, including the proof π3 that E decrypted to one (see C7 and C8). If
Si = S2 and c = wrong then SIM lets “S2” replace ciphertext E with an encryption of a random group element,
causing the adversarially controlled server S1 to fail. If Si = S2 and c = correct then SIM lets “S2” replace E
with an encryption of 1 and lets it fake all proofs.

If this account was set up through a corrupt setup query, then “Si” has a share Ki in its state information, so
it creates the ciphertext C̃ ′i as an encryption of Ki. If this account was setup through an intact setup query from
an honest user and this is the first time that a dishonest user retrieves it with the correct password, then SIM
chooses Ki ←R G, stores Ki in the states of “Si”, and computes C̃ ′i as an encryption of Ki. For all subsequent
corrupt retrieve queries, it uses the same key share Ki, as described in challenger C9.

5.2.4 Retrieve by a Dishonest User

Again, there are three cases: (a) both servers are honest; (b) both servers are corrupt; (c) one of the servers is
corrupt.

(a) Both servers honest The simulator SIM will run simulated parties “S1” and “S2” that will interact
with an adversarial user played by A.

When a server “Si” receives the first message (Rtr, sid , qid ′, 1, F ′i , C
′
1, C

′
2,PK u), the simulator decrypts C ′1

and C ′2 using the CRS secret key SK to obtain p′1, p
′
2, and computes p′ ← p′1p′2. It also retrieves from its state,

if it has any, the ciphertexts (C1, C2, C̃1, C̃2) that “Si” stored at the time when setup was run for this sid . (If
setup has not been completed yet, then in accordance with the protocol, Si will fail, causing the other server
to fail later as well.) SIM then passes an input (Rtr, sid , qid ′, p′) on behalf of U ′ to F . (Note that for each
of the servers S1 and S2, a separate input (Rtr, sid , qid ′, ·) will be generated, but the input arriving last will be
ignored by F . The two inputs may even be for different passwords p′ if the first messages arriving at both servers
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contain different ciphertexts C ′1, C
′
2. This doesn’t influence the view of the adversary or environment, however,

since these protocols will conclude in Step R3(e) that the password was wrong anyway.)
When “Si” outputs (RNtf, sid , qid ′), then SIM sends (RNtf, sid , qid ′,Si) to F . Whenever F sends (Perm, sid ,

qid ′,Si, a) to SIM, SIM provides “Si” with input (Perm, sid , qid ′, a). If SIM received two messages (Perm, sid ,
qid ′,Si, allow), then it also receives a message (Rtr, sid , qid ′, c,K ) from F . If c = wrong then SIM lets “S1”
replace ciphertext E1 with an encryption of 1, lets “S2” replace E with an encryption of a random group element,
lets “S1” fail in Step R4(c), and simulates all proofs. If c = correct, then SIM lets “S1” and “S2” replace E1

and E with encryptions of ones and lets them fake all proofs (see C7 and C8).
If this account was setup through a corrupt setup query, then “S1” and “S2” have correct shares K1 and K2

of the actual key K in their state information. In this case, the ciphertexts C̃ ′1 and C̃ ′2 are constructed normally,
containing the same key shares K1 and K2 as registered in the state information during setup.

If this account was setup through an honest setup query and this is the first time that a corrupt query retrieves
it with the correct password, then SIM chooses K1 ←R G, computes K2 ← K/K1, stores these shares in the
states of “S1” and “S2”, respectively, encrypts them to create ciphertexts C̃ ′1 and C̃ ′2, and simulates all proofs.
For all subsequent corrupt retrieve queries with the correct password, the same key shares K1 and K2 are used,
as described in challenger C9.

When “Si” outputs (RRlt, sid , qid ′, s), then SIM sends (RRlt, sid , qid ′,Si, a) to F , where a ← allow if
s = succ and a← deny if s = fail.

(b) Both servers corrupt This case is entirely internal to the adversary, so there is nothing for the simulator
to do.

(c) One server corrupt Suppose first that S1 is corrupt and S2 honest. The simulator SIM will run a
simulated party “S2” as shown in the description of C8 and C9: When “S2” receives from the real-world user U ′
(controlled by A) a message (Rtr, sid , qid ′, 1, F ′1, C

′
1, C

′
2,PK u), the simulator decrypts C ′1 and C ′2 using the CRS

secret key SK to obtain p′1, p
′
2, computes p′ ← p′1p′2, and provides input (Rtr, sid , qid ′, p′) to F on behalf of U ′.

When “S2” outputs (RNtf, sid , qid ′), then SIM sends (RNtf, sid , qid ′,S2) to F . When SIM receives
(Perm, sid , qid ′,S2, a) from F , SIM inputs (Perm, sid , qid ′, a) to “S2”.

If a = allow then SIM receives an additional message (Rtr, sid , qid ′, c,K ) from F . If c = wrong, then “S2”
acts the way described in C7 when the passwords do not match (i.e., makes E an encryption of a random group
element and simulates all proofs). If c = correct, then “S2” acts the way described in C7 when the passwords
match (i.e. it replaces the ciphertext E in Step R3 with an encryption of 1 and simulates the zero-knowledge
proof π2).

If this account was setup through a corrupt setup query, then “S2” has a correct key share K2 of the actual
key K in its state. In this case, it constructs the ciphertext C̃ ′2 normally, containing the same key share K2.

If this account was setup through an honest setup query and this is the first time that a corrupt query retrieves
it with the correct password, then SIM decrypts C̃1 to obtain K1, computes K2 ← K/K1, stores K2 in the state
of “S2”, encrypts it to create ciphertext C̃ ′2, and simulates all proofs. For all subsequent corrupt retrieve queries
with the correct password, the same key share K2 is used.

When “S2” outputs (RRlt, sid , qid ′, s), SIM sends a message (RRlt, sid , qid ′,S2, a) to F , where a← allow

if s = succ and a← deny if s = fail. Note that “S2” will only succeed if F previously communicated that the
password was correct.

The case that S1 is honest and S2 is corrupt is analogous, with “S1” doing what we described in C9.

6 Conclusion

We have presented a protocol that allows a user to securely store a secret with two servers and retrieve from
them using a human- memorizable password. If at least one of the servers is honest, the secret and password are
protected from all attacks except on- line dictionary attacks; the latter, however, can be detected and countered
by the honest server. Our protocol is reasonably efficient and provably secure in the UC framework, guaranteeing
that it remains secure in arbitrary usage contexts and for arbitrary password distributions. Open problems
include strengthening our protocol to withstand adaptive corruptions, designing a UC-secure 2PASS scheme in
the password-only (i.e., non-public-key) model, and to build UC-secure protocols for the t-out-of-n case.
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